--- language: zh tags: - summarization inference: True --- Task: Summarization ## Usage ```python from transformers import PegasusForConditionalGeneration,BertTokenizer class PegasusTokenizer(BertTokenizer): model_input_names = ["input_ids", "attention_mask"] def __init__(self, **kwargs): super().__init__(**kwargs) # super().__init__(**kwargs) self.add_special_tokens({'additional_special_tokens':[""]}) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]: if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] return token_ids_0 + token_ids_1 + [self.eos_token_id] def _special_token_mask(self, seq): all_special_ids = set( self.all_special_ids) # call it once instead of inside list comp # all_special_ids.remove(self.unk_token_id) # is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) -> List[int]: if already_has_special_tokens: return self._special_token_mask(token_ids_0) elif token_ids_1 is None: return self._special_token_mask(token_ids_0) + [self.eos_token_id] else: return self._special_token_mask(token_ids_0 + token_ids_1) + [self.eos_token_id] model = PegasusForConditionalGeneration.from_pretrained('IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese') tokenizer = PegasusTokenizer.from_pretrained('IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese') text = "在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!" inputs = tokenizer(text, max_length=512, return_tensors="pt") # Generate Summary summary_ids = model.generate(inputs["input_ids"]) tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ``` ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2022}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```