--- library_name: transformers language: - ee license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - dodziraynard/ugspeechdata-ewe model-index: - name: UG Speech Data ASR - Ewe nornmaliser results: [] --- # UG Speech Data ASR - Ewe nornmaliser This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ugspeechdata-ewe dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4720 - eval_wer_ortho: 45.4249 - eval_wer: 37.4757 - eval_cer: 12.9706 - eval_runtime: 1781.9648 - eval_samples_per_second: 2.159 - eval_steps_per_second: 0.135 - epoch: 2.8708 - step: 2400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Tokenizers 0.21.1