# coding=utf-8
# Copyright 2020 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
""" Simple Dataset wrapping an Arrow Table."""
import contextlib
import copy
import json
import os
import pickle
import shutil
import tempfile
from collections import defaultdict
from collections.abc import Iterable, Mapping
from dataclasses import asdict
from functools import partial, wraps
from math import ceil, floor
from pathlib import Path
from typing import TYPE_CHECKING, Any, BinaryIO, Callable, Dict, Iterator, List, Optional, Tuple, Union
import fsspec
import numpy as np
import pandas as pd
import pyarrow as pa
from multiprocess import Pool, RLock
from tqdm.auto import tqdm
from . import config
from .arrow_reader import ArrowReader
from .arrow_writer import ArrowWriter, OptimizedTypedSequence
from .features import Features, Value, cast_to_python_objects
from .filesystems import extract_path_from_uri, is_remote_filesystem
from .fingerprint import (
fingerprint_transform,
generate_fingerprint,
generate_random_fingerprint,
get_temporary_cache_files_directory,
is_caching_enabled,
update_fingerprint,
)
from .formatting import format_table, get_format_type_from_alias, get_formatter, query_table
from .info import DatasetInfo
from .search import IndexableMixin
from .splits import NamedSplit
from .utils import map_nested
from .utils.deprecation_utils import deprecated
from .utils.logging import WARNING, get_logger, get_verbosity, set_verbosity_warning
from .utils.typing import PathLike
if TYPE_CHECKING:
from .dataset_dict import DatasetDict
logger = get_logger(__name__)
if int(pa.__version__.split(".")[0]) == 0:
PYARROW_V0 = True
else:
PYARROW_V0 = False
class DatasetInfoMixin(object):
"""This base class exposes some attributes of DatasetInfo
at the base level of the Dataset for easy access.
"""
def __init__(self, info: DatasetInfo, split: Optional[NamedSplit]):
self._info = info
self._split = split
@property
def info(self):
""" :class:`datasets.DatasetInfo` object containing all the metadata in the dataset."""
return self._info
@property
def split(self):
""" :class:`datasets.NamedSplit` object corresponding to a named dataset split."""
return self._split
@property
def builder_name(self) -> str:
return self._info.builder_name
@property
def citation(self) -> str:
return self._info.citation
@property
def config_name(self) -> str:
return self._info.config_name
@property
def dataset_size(self) -> Optional[int]:
return self._info.dataset_size
@property
def description(self) -> str:
return self._info.description
@property
def download_checksums(self) -> Optional[dict]:
return self._info.download_checksums
@property
def download_size(self) -> Optional[int]:
return self._info.download_size
@property
def features(self) -> Features:
return self._info.features
@property
def homepage(self) -> Optional[str]:
return self._info.homepage
@property
def license(self) -> Optional[str]:
return self._info.license
@property
def size_in_bytes(self) -> Optional[int]:
return self._info.size_in_bytes
@property
def supervised_keys(self):
return self._info.supervised_keys
@property
def version(self):
return self._info.version
class DatasetTransformationNotAllowedError(Exception):
pass
def replayable_table_alteration(func):
"""
Wrapper for dataset transforms that modify an existing table
to save the alteration in order to be able to replay it later.
This happens when the Dataset is pickled and if the table is reloaded from the disk.
In this case we have to re-alter the table using the history of transforms.
The replay happens in the __setstate__ method.
"""
@wraps(func)
def wrapper(*args, **kwargs):
if args:
self: "Dataset" = args[0]
args = args[1:]
else:
self: "Dataset" = kwargs.pop("self")
# an history item is a tuple of the method name to call and then the args and the kwargs
new_inplace_history_item = (func.__name__, copy.deepcopy(args), copy.deepcopy(kwargs))
# apply actual function
out: Optional["Dataset"] = func(self, *args, **kwargs)
# get the dataset to update (to handle both in-place and not in-place transforms)
dataset: "Dataset" = out if out is not None else self
# update the history to be able to replay it later
for inplace_hist_per_file in dataset._inplace_history:
inplace_hist_per_file["transforms"].append(new_inplace_history_item)
return out
wrapper._decorator_name_ = "table_alteration"
return wrapper
def transmit_format(func):
"""Wrapper for dataset transforms that recreate a new Dataset to transmit the format of the original dataset to the new dataset"""
@wraps(func)
def wrapper(*args, **kwargs):
if args:
self: "Dataset" = args[0]
args = args[1:]
else:
self: "Dataset" = kwargs.pop("self")
# don't use self.format since it returns a list of columns for 'columns' even if self_format_columns is None
unformatted_columns = set(self.column_names) - set(self._format_columns or [])
self_format = {
"type": self._format_type,
"format_kwargs": self._format_kwargs,
"columns": self._format_columns,
"output_all_columns": self._output_all_columns,
}
# apply actual function
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
# re-apply format to the output
for dataset in datasets:
new_format = self_format.copy()
if new_format["columns"] is not None: # new formatted columns = (columns - previously unformatted columns)
# sort the columns to have a deterministic list of columns that we can compare with `out_format`
new_format["columns"] = sorted(set(dataset.column_names) - unformatted_columns)
out_format = {
"type": dataset._format_type,
"format_kwargs": dataset._format_kwargs,
"columns": sorted(dataset._format_columns) if dataset._format_columns is not None else None,
"output_all_columns": dataset._output_all_columns,
}
if out_format != new_format: # only apply if there's a change not to update the fingerprint for nothing
dataset.set_format(**new_format)
return out
wrapper._decorator_name_ = "transmit_format"
return wrapper
[docs]class Dataset(DatasetInfoMixin, IndexableMixin):
"""A Dataset backed by an Arrow table or Record Batch."""
def __init__(
self,
arrow_table: pa.Table,
data_files: Optional[List[dict]] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
indices_table: Optional[pa.Table] = None,
indices_data_files: Optional[List[dict]] = None,
fingerprint: Optional[str] = None,
inplace_history: Optional[List[dict]] = None,
):
info = info.copy() if info is not None else DatasetInfo()
DatasetInfoMixin.__init__(self, info=info, split=split)
IndexableMixin.__init__(self)
self._data: pa.Table = arrow_table
self._indices: Optional[pa.Table] = indices_table
self._data_files: List[dict] = data_files if data_files is not None else []
self._indices_data_files: List[dict] = indices_data_files if indices_data_files is not None else []
self._inplace_history: List[dict] = (
inplace_history
if inplace_history is not None
else [{"transforms": []} for _ in range(len(self._data_files))]
)
self._format_type: Optional[str] = None
self._format_kwargs: dict = {}
self._format_columns: Optional[list] = None
self._output_all_columns: bool = False
self._fingerprint: str = fingerprint
# Read metadata
if self._data.schema.metadata is not None and "huggingface".encode("utf-8") in self._data.schema.metadata:
metadata = json.loads(self._data.schema.metadata["huggingface".encode("utf-8")].decode())
if "info" in metadata and self.info.features is None: # try to load features from the arrow file metadata
self._info.features = DatasetInfo.from_dict(metadata["info"]).features
if (
"fingerprint" in metadata and self._fingerprint is None
): # try to load fingerprint from the arrow file metadata
self._fingerprint = metadata["fingerprint"]
# Infer features if None
inferred_features = Features.from_arrow_schema(arrow_table.schema)
if self.info.features is None:
self.info.features = inferred_features
# Infer fingerprint if None
if self._fingerprint is None:
self._fingerprint = generate_fingerprint(self)
# Sanity checks
assert self.features is not None, "Features can't be None in a Dataset object"
assert self._fingerprint is not None, "Fingerprint can't be None in a Dataset object"
if self.info.features.type != inferred_features.type:
raise ValueError(
"External features info don't match the dataset:\nGot\n{}\nwith type\n{}\n\nbut expected something like\n{}\nwith type\n{}".format(
self.info.features, self.info.features.type, inferred_features, inferred_features.type
)
)
if self._indices is not None:
assert pa.types.is_unsigned_integer(
self._indices.column(0)[0].type
), f"indices must be an Arrow table of unsigned integers, current type is {self._indices.column(0)[0].type}"
[docs] @classmethod
def from_file(
cls,
filename: str,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
indices_filename: Optional[str] = None,
in_memory: bool = False,
) -> "Dataset":
"""Instantiate a Dataset backed by an Arrow table at filename.
Args:
filename (str): File name of the dataset.
info (DatasetInfo, optional): Dataset information, like description, citation, etc.
split (NamedSplit, optional): Name of the dataset split.
indices_filename (str, optional): File names of the indices.
in_memory (bool, default False): Whether to copy the data in-memory.
Returns:
datasets.Dataset
"""
pa_table = ArrowReader.read_table(filename, in_memory=in_memory)
data_files = [{"filename": filename}] if not in_memory else None
if indices_filename is not None:
indices_pa_table = ArrowReader.read_table(indices_filename, in_memory=in_memory)
indices_data_files = [{"filename": indices_filename}] if not in_memory else None
else:
indices_pa_table = None
indices_data_files = None
return cls(
arrow_table=pa_table,
data_files=data_files,
info=info,
split=split,
indices_table=indices_pa_table,
indices_data_files=indices_data_files,
)
[docs] @classmethod
def from_buffer(
cls,
buffer: pa.Buffer,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
indices_buffer: Optional[pa.Buffer] = None,
) -> "Dataset":
""" Instantiate a Dataset backed by an Arrow buffer """
stream = pa.BufferReader(buffer)
f = pa.ipc.open_stream(stream)
pa_table = f.read_all()
if indices_buffer is not None:
indices_mmap = pa.BufferReader(indices_buffer)
indices_f = pa.ipc.open_stream(indices_mmap)
indices_pa_table = indices_f.read_all()
else:
indices_pa_table = None
return cls(pa_table, info=info, split=split, indices_table=indices_pa_table)
[docs] @classmethod
def from_pandas(
cls,
df: pd.DataFrame,
features: Optional[Features] = None,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
) -> "Dataset":
"""
Convert :obj:``pandas.DataFrame`` to a "obj"``pyarrow.Table`` to create a :obj:``datasets.Dataset``.
The column types in the resulting Arrow Table are inferred from the dtypes of the pandas.Series in the DataFrame. In the case of non-object
Series, the NumPy dtype is translated to its Arrow equivalent. In the case of `object`, we need to guess the datatype by looking at the
Python objects in this Series.
Be aware that Series of the `object` dtype don't carry enough information to always lead to a meaningful Arrow type. In the case that
we cannot infer a type, e.g. because the DataFrame is of length 0 or the Series only contains None/nan objects, the type is set to
null. This behavior can be avoided by constructing explicit features and passing it to this function.
Args:
df (:obj:``pandas.DataFrame``): the dataframe that contains the dataset.
features (:obj:``datasets.Features``, `optional`, defaults to :obj:``None``): If specified, the features types of the dataset
info (:obj:``datasets.DatasetInfo``, `optional`, defaults to :obj:``None``): If specified, the dataset info containing info like
description, citation, etc.
split (:obj:``datasets.NamedSplit``, `optional`, defaults to :obj:``None``): If specified, the name of the dataset split.
"""
if info is not None and features is not None and info.features != features:
raise ValueError(
"Features specified in `features` and `info.features` can't be different:\n{}\n{}".format(
features, info.features
)
)
features = features if features is not None else info.features if info is not None else None
if info is None:
info = DatasetInfo()
info.features = features
pa_table: pa.Table = pa.Table.from_pandas(
df=df, schema=pa.schema(features.type) if features is not None else None
)
return cls(pa_table, info=info, split=split)
[docs] @classmethod
def from_dict(
cls,
mapping: dict,
features: Optional[Features] = None,
info: Optional[Any] = None,
split: Optional[Any] = None,
) -> "Dataset":
"""
Convert :obj:``dict`` to a "obj"``pyarrow.Table`` to create a :obj:``datasets.Dataset``.
Args:
mapping (:obj:``mapping``): A mapping of strings to Arrays or Python lists.
features (:obj:``datasets.Features``, `optional`, defaults to :obj:``None``): If specified, the features types of the dataset
info (:obj:``datasets.DatasetInfo``, `optional`, defaults to :obj:``None``): If specified, the dataset info containing info like
description, citation, etc.
split (:obj:``datasets.NamedSplit``, `optional`, defaults to :obj:``None``): If specified, the name of the dataset split.
"""
if info is not None and features is not None and info.features != features:
raise ValueError(
"Features specified in `features` and `info.features` can't be different:\n{}\n{}".format(
features, info.features
)
)
features = features if features is not None else info.features if info is not None else None
if info is None:
info = DatasetInfo()
info.features = features
if features is not None:
mapping = features.encode_batch(mapping)
else:
mapping = cast_to_python_objects(mapping)
mapping = {
col: OptimizedTypedSequence(data, type=features.type[col].type if features is not None else None, col=col)
for col, data in mapping.items()
}
pa_table: pa.Table = pa.Table.from_pydict(mapping=mapping)
return cls(pa_table, info=info, split=split)
[docs] @staticmethod
def from_csv(
path_or_paths: Union[PathLike, List[PathLike]],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
):
"""Create Dataset from CSV file(s).
Args:
path_or_paths (path-like or list of path-like): Path(s) of the CSV file(s).
split (:class:`NamedSplit`, optional): Split name to be assigned to the dataset.
features (:class:`Features`, optional): Dataset features.
cache_dir (str, optional, default="~/datasets"): Directory to cache data.
keep_in_memory (bool, default=False): Whether to copy the data in-memory.
**kwargs: Keyword arguments to be passed to :meth:`pandas.read_csv`.
Returns:
:class:`Dataset`
"""
# Dynamic import to avoid circular dependency
from .io.csv import CsvDatasetReader
return CsvDatasetReader(
path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
[docs] @staticmethod
def from_json(
path_or_paths: Union[PathLike, List[PathLike]],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
field: Optional[str] = None,
**kwargs,
):
"""Create Dataset from JSON or JSON Lines file(s).
Args:
path_or_paths (path-like or list of path-like): Path(s) of the JSON or JSON Lines file(s).
split (:class:`NamedSplit`, optional): Split name to be assigned to the dataset.
features (:class:`Features`, optional): Dataset features.
cache_dir (str, optional, default="~/datasets"): Directory to cache data.
keep_in_memory (bool, default=False): Whether to copy the data in-memory.
field (str, optional): Field name of the JSON file where the dataset is contained in.
**kwargs: Keyword arguments to be passed to :class:`JsonConfig`.
Returns:
:class:`Dataset`
"""
# Dynamic import to avoid circular dependency
from .io.json import JsonDatasetReader
return JsonDatasetReader(
path_or_paths,
split=split,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
field=field,
**kwargs,
).read()
[docs] @staticmethod
def from_text(
path_or_paths: Union[PathLike, List[PathLike]],
split: Optional[NamedSplit] = None,
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
):
"""Create Dataset from text file(s).
Args:
path_or_paths (path-like or list of path-like): Path(s) of the text file(s).
split (:class:`NamedSplit`, optional): Split name to be assigned to the dataset.
features (:class:`Features`, optional): Dataset features.
cache_dir (str, optional, default="~/datasets"): Directory to cache data.
keep_in_memory (bool, default=False): Whether to copy the data in-memory.
**kwargs: Keyword arguments to be passed to :class:`TextConfig`.
Returns:
:class:`Dataset`
"""
# Dynamic import to avoid circular dependency
from .io.text import TextDatasetReader
return TextDatasetReader(
path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
def __del__(self):
if hasattr(self, "_data"):
del self._data
if hasattr(self, "_indices"):
del self._indices
def __getstate__(self):
state = self.__dict__.copy()
state["_info"] = json.dumps(asdict(state["_info"]))
state["_split"] = str(state["_split"]) if isinstance(state["_split"], NamedSplit) else state["_split"]
if self._data_files:
state["_data"] = None
if self._indices_data_files:
state["_indices"] = None
logger.debug("Copying history")
state["_inplace_history"] = [{"transforms": list(h["transforms"])} for h in state["_inplace_history"]]
return state
def __setstate__(self, state):
assert (
state.get("_data") is not None or state.get("_data_files") is not None
), "tried to unpickle a dataset without arrow_table or data_files"
state = state.copy()
state["_info"] = DatasetInfo.from_dict(json.loads(state["_info"]))
state["_split"] = NamedSplit(state["_split"]) if isinstance(state["_split"], str) else state["_split"]
self.__dict__ = state
reader = ArrowReader("", self.info)
# Read arrow tables
if self._data is None and self._data_files:
tables = []
for data_file, inplace_hist_per_file in zip(self._data_files, self._inplace_history):
# Replay in-place history of transforms (cast_, rename_column_, etc.)
pa_table = reader._read_files([data_file])
sub_dataset = Dataset(pa_table, fingerprint="")
for inplace_transform_name, args, kwargs in inplace_hist_per_file["transforms"]:
out = getattr(sub_dataset, inplace_transform_name)(*args, **kwargs)
sub_dataset = sub_dataset if out is None else out
tables.append(sub_dataset._data)
tables = [t for t in tables if len(t) > 0]
# fix all-empty tables
tables = tables or [pa.Table.from_batches([], schema=pa.schema(self.info.features.type))]
self._data = pa.concat_tables(tables)
reader = ArrowReader("", DatasetInfo(features=Features({"indices": Value("int64")})))
if self._indices is None and self._indices_data_files:
self._indices = reader._read_files(self._indices_data_files)
[docs] def save_to_disk(self, dataset_path: str, fs=None):
"""
Saves a dataset to a dataset directory, or in a filesystem using either :class:`~filesystems.S3FileSystem` or
any implementation of ``fsspec.spec.AbstractFileSystem``.
Args:
dataset_path (``str``): Path (e.g. `dataset/train`) or remote URI (e.g. `s3://my-bucket/dataset/train`) of
the dataset directory where the dataset will be saved to.
fs (:class:`~filesystems.S3FileSystem`, ``fsspec.spec.AbstractFileSystem``, optional, defaults ``None``):
Instance of the remote filesystem used to download the files from.
"""
assert (
not self.list_indexes()
), "please remove all the indexes using `dataset.drop_index` before saving a dataset"
self = pickle.loads(pickle.dumps(self))
if is_remote_filesystem(fs):
dataset_path = extract_path_from_uri(dataset_path)
else:
fs = fsspec.filesystem("file")
# create temporary directory for saving
with tempfile.TemporaryDirectory() as temp_dataset_path:
fs.makedirs(dataset_path, exist_ok=True)
# Write indices if needed
if self._indices is not None:
if not self._indices_data_files:
cache_file_name = os.path.join(temp_dataset_path, "indices.arrow")
with ArrowWriter(path=cache_file_name) as writer:
writer.write_table(self._indices)
writer.finalize()
self._indices_data_files = [{"filename": cache_file_name}]
# Write dataset if needed
if not self._data_files or any(len(h["transforms"]) > 0 for h in self._inplace_history):
cache_file_name = os.path.join(temp_dataset_path, "dataset.arrow")
with ArrowWriter(path=cache_file_name) as writer:
writer.write_table(self._data)
writer.finalize()
self._data_files = [{"filename": cache_file_name}]
self._inplace_history = [{"transforms": []}]
# Copy all files into the dataset directory
for data_file in self._data_files + self._indices_data_files:
src = Path(data_file["filename"])
dest = Path(dataset_path).joinpath(src.name)
if fs.protocol != "file":
fs.put(src.as_posix(), dest.as_posix())
elif src.as_posix() != dest.as_posix():
fs.put(src.as_posix(), dest.as_posix())
# Change path to relative path from inside the destination directory
data_file["filename"] = src.name
# Get state
state = self.__getstate__()
dataset_info = json.loads(state.pop("_info"))
assert state.get("_data") is None, "arrow table needs to be memory mapped"
assert state.get("_indices") is None, "arrow table needs to be memory mapped"
assert all(
len(h["transforms"]) == 0 for h in state.get("_inplace_history", [])
), "in-place history needs to be empty"
for k in state["_format_kwargs"].keys():
try:
json.dumps(state["_format_kwargs"][k])
except TypeError as e:
raise TypeError(str(e) + f"\nThe format kwargs must be jSON serializable, but key '{k}' isn't.")
# Serialize state
with fs.open(Path(dataset_path).joinpath("state.json").as_posix(), "w", encoding="utf-8") as state_file:
json.dump(state, state_file, indent=2, sort_keys=True)
with fs.open(
Path(dataset_path).joinpath("dataset_info.json").as_posix(), "w", encoding="utf-8"
) as dataset_info_file:
json.dump(dataset_info, dataset_info_file, indent=2, sort_keys=True)
logger.info("Dataset saved in {}".format(dataset_path))
[docs] @staticmethod
def load_from_disk(dataset_path: str, fs=None) -> "Dataset":
"""
Loads a dataset that was previously saved using :meth:`save_to_disk` from a dataset directory, or from a
filesystem using either :class:`~filesystems.S3FileSystem` or any implementation of ``fsspec.spec.AbstractFileSystem``.
Args:
dataset_path (``str``): Path (e.g. `dataset/train`) or remote URI (e.g. `s3//my-bucket/dataset/train`) of
the dataset directory where the dataset will be loaded from.
fs (:class:`~filesystems.S3FileSystem`, ``fsspec.spec.AbstractFileSystem``, optional, defaults ``None``):
Instance of the remote filesystem used to download the files from.
Returns:
:class:`Dataset` or :class:`DatasetDict`.
- if `dataset_path` is a path of a dataset directory: the :class:`Dataset` requested,
- if `dataset_path` is a path of a dataset dict directory: a :class:`DatasetDict` with each split.
"""
# copies file from filesystem if it is remote filesystem to local filesystem and modifies dataset_path to temp directory containing local copies
if is_remote_filesystem(fs):
src_dataset_path = extract_path_from_uri(dataset_path)
tmp_dir = tempfile.TemporaryDirectory()
dataset_path = Path(tmp_dir.name).joinpath(src_dataset_path)
fs.download(src_dataset_path, dataset_path.as_posix(), recursive=True)
with open(Path(dataset_path).joinpath("state.json").as_posix(), "r", encoding="utf-8") as state_file:
state = json.load(state_file)
with open(
Path(dataset_path).joinpath("dataset_info.json").as_posix(), "r", encoding="utf-8"
) as dataset_info_file:
dataset_info = json.load(dataset_info_file)
state["_info"] = json.dumps(dataset_info)
dataset = Dataset.from_dict({})
state = {k: state[k] for k in dataset.__dict__.keys()} # in case we add new fields
# Change path to absolute path
for data_file in state.get("_data_files", []) + state.get("_indices_data_files", []):
data_file["filename"] = Path(dataset_path).joinpath(data_file["filename"]).as_posix()
dataset.__setstate__(state)
if "tmp_dir" in vars() and os.path.exists(tmp_dir.name):
shutil.rmtree(tmp_dir.name, ignore_errors=True)
return dataset
@property
def data(self) -> pa.Table:
"""The Apache Arrow table backing the dataset."""
return self._data
@property
def cache_files(self):
"""The cache file containing the Apache Arrow table backing the dataset."""
return self._data_files
@property
def num_columns(self) -> int:
"""Number of columns in the dataset."""
return self._data.num_columns
@property
def num_rows(self) -> int:
"""Number of rows in the dataset (same as :func:`datasets.Dataset.__len__`)."""
if self._indices is not None:
return self._indices.num_rows
return self._data.num_rows
@property
def column_names(self) -> List[str]:
"""Names of the columns in the dataset. """
return self._data.column_names
@property
def shape(self) -> Tuple[int, int]:
"""Shape of the dataset (number of columns, number of rows)."""
if self._indices is not None:
return (self._indices.num_rows, self._data.num_columns)
return self._data.shape
[docs] def unique(self, column: str) -> List[Any]:
"""Return a list of the unique elements in a column.
This is implemented in the low-level backend and as such, very fast.
Args:
column (:obj:`str`):
column name (list all the column names with :func:`datasets.Dataset.column_names`)
Returns: :obj:`list` of unique elements in the given column.
"""
if column not in self._data.column_names:
raise ValueError(f"Column ({column}) not in table columns ({self._data.column_names}).")
if self._indices is not None and self._indices.num_rows != self._data.num_rows:
raise ValueError(
f"This dataset is a shallow copy using an indices mapping of another Datset {self._data.num_rows}."
f"The `Dataset.unique()` method is currently not handled on shallow copy. Please use `Dataset.flatten_indices()` "
f"to create a deep copy of the dataset and be able to use `Dataset.unique()`."
)
return self._data.column(column).unique().to_pylist()
@deprecated(help_message="Use the dataset.dictionary_encode_column method instead.")
@replayable_table_alteration
@fingerprint_transform(inplace=True)
def dictionary_encode_column_(self, column: str):
"""Dictionary encode a column.
Dictionary encode can reduce the size of a column with many repetitions (e.g. string labels columns)
by storing a dictionary of the strings. This only affect the internal storage.
Args:
column (:obj:`str`):
"""
if column not in self._data.column_names:
raise ValueError(f"Column ({column}) not in table columns ({self._data.column_names}).")
casted_schema: pa.Schema = self._data.schema
field_index = casted_schema.get_field_index(column)
field: pa.Field = casted_schema.field(field_index)
casted_field = pa.field(field.name, pa.dictionary(pa.int32(), field.type), nullable=False)
casted_schema.set(field_index, casted_field)
self._data = self._data.cast(casted_schema)
self.info.features = Features.from_arrow_schema(self._data.schema)
[docs] @deprecated(help_message="Use the dataset.flatten method instead.")
@replayable_table_alteration
@fingerprint_transform(inplace=True)
def flatten_(self, max_depth=16):
"""
In-place version of :func:`Dataset.flatten`
This method is deprecated, please use :func:`Dataset.flatten` instead.
"""
for depth in range(1, max_depth):
if any(isinstance(field.type, pa.StructType) for field in self._data.schema):
self._data = self._data.flatten()
else:
break
if self.info is not None:
self.info.features = Features.from_arrow_schema(self._data.schema)
logger.info(
"Flattened dataset from depth {} to depth {}.".format(depth, 1 if depth + 1 < max_depth else "unknown")
)
[docs] @replayable_table_alteration
@fingerprint_transform(inplace=False)
def flatten(self, new_fingerprint, max_depth=16) -> "Dataset":
"""Flattens the table.
Each column with a struct type is flattened into one column per struct field.
Other columns are left unchanged.
Returns:
A copy of the dataset with flattened columns
"""
dataset = copy.deepcopy(self)
for depth in range(1, max_depth):
if any(isinstance(field.type, pa.StructType) for field in dataset._data.schema):
dataset._data = dataset._data.flatten()
else:
break
if dataset.info is not None:
dataset.info.features = Features.from_arrow_schema(dataset._data.schema)
logger.info(
"Flattened dataset from depth {} to depth {}.".format(depth, 1 if depth + 1 < max_depth else "unknown")
)
dataset._fingerprint = new_fingerprint
return dataset
[docs] @deprecated(help_message="Use the dataset.cast method instead.")
@replayable_table_alteration
@fingerprint_transform(inplace=True)
def cast_(self, features: Features):
"""
In-place version of :func:`Dataset.cast`
This method is deprecated, please use :func:`Dataset.cast` instead.
Args:
features (:class:`datasets.Features`): New features to cast the dataset to.
The name of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. string <-> ClassLabel you should use :func:`map` to update the Dataset.
"""
if sorted(features) != sorted(self._data.column_names):
raise ValueError(
f"The columns in features ({list(features)}) must be identical "
f"as the columns in the dataset: {self._data.column_names}"
)
self._info.features = features
type = features.type
schema = pa.schema({col_name: type[col_name].type for col_name in self._data.column_names})
self._data = self._data.cast(schema)
[docs] @replayable_table_alteration
@fingerprint_transform(inplace=False)
def cast(self, features: Features, new_fingerprint) -> "Dataset":
"""
Cast the dataset to a new set of features.
Args:
features (:class:`datasets.Features`): New features to cast the dataset to.
The name of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. string <-> ClassLabel you should use :func:`map` to update the Dataset.
Returns:
A copy of the dataset with casted features
"""
dataset = copy.deepcopy(self)
if sorted(features) != sorted(dataset._data.column_names):
raise ValueError(
f"The columns in features ({list(features)}) must be identical "
f"as the columns in the dataset: {dataset._data.column_names}"
)
dataset._info.features = features
type = features.type
schema = pa.schema({col_name: type[col_name].type for col_name in dataset._data.column_names})
dataset._data = dataset._data.cast(schema)
dataset._fingerprint = new_fingerprint
return dataset
[docs] @deprecated(help_message="Use the dataset.remove_columns method instead.")
@replayable_table_alteration
@fingerprint_transform(inplace=True)
def remove_columns_(self, column_names: Union[str, List[str]]):
"""
In-place version of :func:`Dataset.remove_columns`
This method is deprecated, please use :func:`Dataset.remove_columns` instead.
Args:
column_names (:obj:`Union[str, List[str]]`): Name of the column(s) to remove.
"""
if isinstance(column_names, str):
column_names = [column_names]
for column_name in column_names:
if column_name not in self._data.column_names:
raise ValueError(
f"Column name {column_name} not in the dataset. "
f"Current columns in the dataset: {self._data.column_names}"
)
for column_name in column_names:
del self._info.features[column_name]
self._data = self._data.drop(column_names)
[docs] @replayable_table_alteration
@fingerprint_transform(inplace=False)
def remove_columns(self, column_names: Union[str, List[str]], new_fingerprint) -> "Dataset":
"""
Remove one or several column(s) in the dataset and
the features associated to them.
You can also remove a column using :func:`Dataset.map` with `remove_columns` but the present method
is in-place (doesn't copy the data to a new dataset) and is thus faster.
Args:
column_names (:obj:`Union[str, List[str]]`): Name of the column(s) to remove.
Returns:
A copy of the dataset object without the columns to remove
"""
dataset = copy.deepcopy(self)
if isinstance(column_names, str):
column_names = [column_names]
for column_name in column_names:
if column_name not in dataset._data.column_names:
raise ValueError(
f"Column name {column_name} not in the dataset. "
f"Current columns in the dataset: {dataset._data.column_names}"
)
for column_name in column_names:
del dataset._info.features[column_name]
dataset._data = dataset._data.drop(column_names)
dataset._fingerprint = new_fingerprint
return dataset
[docs] @deprecated(help_message="Use the dataset.rename_column method instead.")
@replayable_table_alteration
@fingerprint_transform(inplace=True)
def rename_column_(self, original_column_name: str, new_column_name: str):
"""
In-place version of :func:`Dataset.rename_column`
This method is deprecated, please use :func:`Dataset.rename_column` instead.
Args:
original_column_name (:obj:`str`): Name of the column to rename.
new_column_name (:obj:`str`): New name for the column.
"""
if original_column_name not in self._data.column_names:
raise ValueError(
f"Original column name {original_column_name} not in the dataset. "
f"Current columns in the dataset: {self._data.column_names}"
)
if new_column_name in self._data.column_names:
raise ValueError(
f"New column name {original_column_name} already in the dataset. "
f"Please choose a column name which is not already in the dataset. "
f"Current columns in the dataset: {self._data.column_names}"
)
if not new_column_name:
raise ValueError("New column name is empty.")
def rename(columns):
return [new_column_name if col == original_column_name else col for col in columns]
new_column_names = rename(self._data.column_names)
if self._format_columns is not None:
self._format_columns = rename(self._format_columns)
self._info.features = Features(
{
new_column_name if col == original_column_name else col: feature
for col, feature in self._info.features.items()
}
)
self._data = self._data.rename_columns(new_column_names)
[docs] @replayable_table_alteration
@fingerprint_transform(inplace=False)
def rename_column(self, original_column_name: str, new_column_name: str, new_fingerprint) -> "Dataset":
"""
Rename a column in the dataset, and move the features associated to the original column under the new column name.
Args:
original_column_name (:obj:`str`): Name of the column to rename.
new_column_name (:obj:`str`): New name for the column.
Returns:
A copy of the dataset with a renamed column
"""
dataset = copy.deepcopy(self)
if original_column_name not in dataset._data.column_names:
raise ValueError(
f"Original column name {original_column_name} not in the dataset. "
f"Current columns in the dataset: {dataset._data.column_names}"
)
if new_column_name in dataset._data.column_names:
raise ValueError(
f"New column name {original_column_name} already in the dataset. "
f"Please choose a column name which is not already in the dataset. "
f"Current columns in the dataset: {dataset._data.column_names}"
)
if not new_column_name:
raise ValueError("New column name is empty.")
def rename(columns):
return [new_column_name if col == original_column_name else col for col in columns]
new_column_names = rename(self._data.column_names)
if self._format_columns is not None:
dataset._format_columns = rename(self._format_columns)
dataset._info.features = Features(
{
new_column_name if col == original_column_name else col: feature
for col, feature in self._info.features.items()
}
)
dataset._data = dataset._data.rename_columns(new_column_names)
dataset._fingerprint = new_fingerprint
return dataset
[docs] def __len__(self):
""" Number of rows in the dataset """
return self.num_rows
[docs] def __iter__(self):
"""Iterate through the examples.
If a formatting is set with :func:`datasets.Dataset.set_format` rows will be returned with the
selected format.
"""
format_type = self._format_type
format_kwargs = self._format_kwargs
format_columns = self._format_columns
output_all_columns = self._output_all_columns
for index in range(self.num_rows):
yield self._getitem(
index,
format_type=format_type,
format_columns=format_columns,
output_all_columns=output_all_columns,
format_kwargs=format_kwargs,
)
def __repr__(self):
return f"Dataset({{\n features: {list(self.features.keys())},\n num_rows: {self.num_rows}\n}})"
@property
def format(self):
return {
"type": self._format_type,
"format_kwargs": self._format_kwargs,
"columns": self.column_names if self._format_columns is None else self._format_columns,
"output_all_columns": self._output_all_columns,
}
def _getitem(
self,
key: Union[int, slice, str],
format_type=None,
format_columns=None,
output_all_columns=False,
format_kwargs=None,
) -> Union[Dict, List]:
"""
Can be used to index columns (by string names) or rows (by integer index, slices, or iter of indices or bools)
"""
format_kwargs = format_kwargs if format_kwargs is not None else {}
formatter = get_formatter(format_type, **format_kwargs)
pa_subtable = query_table(
self._data, key, indices=self._indices.column(0) if self._indices is not None else None
)
formatted_output = format_table(
pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns
)
return formatted_output
[docs] def __getitem__(self, key: Union[int, slice, str]) -> Union[Dict, List]:
"""
Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)
"""
return self._getitem(
key,
format_type=self._format_type,
format_columns=self._format_columns,
output_all_columns=self._output_all_columns,
format_kwargs=self._format_kwargs,
)
[docs] def cleanup_cache_files(self):
"""Clean up all cache files in the dataset cache directory, excepted the currently used cache file if there is one.
Be carefull when running this command that no other process is currently using other cache files.
Return:
Number of removed files
"""
if not self._data_files or "filename" not in self._data_files[0]:
return None
current_cache_files = [os.path.abspath(cache_file["filename"]) for cache_file in self._data_files]
cache_directory = os.path.dirname(current_cache_files[0])
logger.info(f"Listing files in {cache_directory}")
files: List[str] = os.listdir(cache_directory)
files_to_remove = []
for f_name in files:
full_name = os.path.abspath(os.path.join(cache_directory, f_name))
if f_name.startswith("cache-") and f_name.endswith(".arrow"):
if full_name in current_cache_files:
logger.info(f"Keeping currently used cache file at {full_name}")
continue
files_to_remove.append(full_name)
for file_path in files_to_remove:
logger.info(f"Removing {file_path}")
os.remove(file_path)
return len(files_to_remove)
def _get_cache_file_path(self, fingerprint):
if is_caching_enabled():
cache_file_name = "cache-" + fingerprint + ".arrow"
cache_directory = os.path.dirname(self._data_files[0]["filename"])
else:
cache_file_name = "cache-" + generate_random_fingerprint() + ".arrow"
cache_directory = get_temporary_cache_files_directory()
cache_file_path = os.path.join(cache_directory, cache_file_name)
return cache_file_path
[docs] def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[List[str]] = None,
keep_in_memory: bool = False,
load_from_cache_file: bool = None,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
suffix_template: str = "_{rank:05d}_of_{num_proc:05d}",
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Apply a function to all the elements in the table (individually or in batches)
and update the table (if function does updated examples).
Args:
function (`callable`): with one of the following signature:
- `function(example: Union[Dict, Any]) -> Union[Dict, Any]` if `batched=False` and `with_indices=False`
- `function(example: Union[Dict, Any], indices: int) -> Union[Dict, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Union[Dict[List], List[Any]]) -> Union[Dict, Any]` if `batched=True` and `with_indices=False`
- `function(batch: Union[Dict[List], List[Any]], indices: List[int]) -> Union[Dict, Any]` if `batched=True` and `with_indices=True`
If no function is provided, default to identity function: lambda x: x
with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`): Provide batch of examples to `function`
batch_size (`Optional[int]`, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True`
`batch_size <= 0` or `batch_size == None`: Provide the full dataset as a single batch to `function`
drop_last_batch (`bool`, default: `False`): Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`Optional[List[str]]`, defaults to `None`): Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`bool`, defaults to `True` if caching is enabled): If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
features (`Optional[datasets.Features]`, defaults to `None`): Use a specific Features to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `True`): Disallow null values in the table.
fn_kwargs (`Optional[Dict]`, defaults to `None`): Keyword arguments to be passed to `function`
num_proc (`Optional[int]`, defaults to `None`): Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
suffix_template (`str`, defaults to "_{rank:05d}_of_{num_proc:05d}"): If cache_file_name is specified, then this suffix
will be added at the end of the base name of each. For example, if cache_file_name is "processed.arrow", then for
rank=1 and num_proc=4, the resulting file would be "processed_00001_of_00004.arrow" for the default suffix.
new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
assert num_proc is None or num_proc > 0, "num_proc must be an integer > 0."
# If the array is empty we do nothing
if len(self) == 0:
return self
if function is None:
function = lambda x: x # noqa: E731
if isinstance(input_columns, str):
input_columns = [input_columns]
if input_columns is not None:
for input_column in input_columns:
if input_column not in self._data.column_names:
raise ValueError(
"Input column {} not in the dataset. Current columns in the dataset: {}".format(
input_column, self._data.column_names
)
)
load_from_cache_file = load_from_cache_file if load_from_cache_file is not None else is_caching_enabled()
if fn_kwargs is None:
fn_kwargs = {}
# Check if the function returns updated examples
def does_function_return_dict(inputs, indices):
""" Does the function returns a dict. """
fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns]
processed_inputs = (
function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs)
)
does_return_dict = isinstance(processed_inputs, Mapping)
if does_return_dict is False and processed_inputs is not None:
raise TypeError(
"Provided `function` which is applied to all elements of table returns a variable of type {}. Make sure provided `function` returns a variable of type `dict` to update the dataset or `None` if you are only interested in side effects.".format(
type(processed_inputs)
)
)
elif isinstance(test_indices, list) and does_return_dict is True:
allowed_batch_return_types = (list, np.ndarray)
all_dict_values_are_lists = all(
isinstance(value, allowed_batch_return_types) for value in processed_inputs.values()
)
if all_dict_values_are_lists is False:
raise TypeError(
"Provided `function` which is applied to all elements of table returns a `dict` of types {}. When using `batched=True`, make sure provided `function` returns a `dict` of types like `{}`.".format(
[type(x) for x in processed_inputs.values()], allowed_batch_return_types
)
)
return does_return_dict
# We only update the data table (and use the cache) if the function returns a dict.
# Test it on the first element or a small batch (0, 1) for batched inputs
logger.info("Testing the mapped function outputs")
test_inputs = self[:2] if batched else self[0]
test_indices = [0, 1] if batched else 0
update_data = does_function_return_dict(test_inputs, test_indices)
logger.info("Testing finished, running the mapping function on the dataset")
if num_proc is None or num_proc == 1:
return self._map_single(
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_name,
writer_batch_size=writer_batch_size,
features=features,
disable_nullable=disable_nullable,
fn_kwargs=fn_kwargs,
new_fingerprint=new_fingerprint,
update_data=update_data,
)
else:
def format_cache_file_name(cache_file_name, rank):
sep = cache_file_name.rindex(".")
base_name, extension = cache_file_name[:sep], cache_file_name[sep:]
cache_file_name = base_name + suffix_template.format(rank=rank, num_proc=num_proc) + extension
logger.info("Process #{} will write at {}".format(rank, cache_file_name))
return cache_file_name
prev_env = os.environ.copy()
# check if parallelism if off
# from https://github.com/huggingface/tokenizers/blob/bb668bc439dc34389b71dbb8ce0c597f15707b53/tokenizers/src/utils/parallelism.rs#L22
if prev_env.get("TOKENIZERS_PARALLELISM", "false").lower() not in (
"",
"off",
"false",
"f",
"no",
"n",
"0",
):
logger.warning("Setting TOKENIZERS_PARALLELISM=false for forked processes.")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
with Pool(num_proc, initargs=(RLock(),), initializer=tqdm.set_lock) as pool:
os.environ = prev_env
shards = [
self.shard(num_shards=num_proc, index=rank, contiguous=True, keep_in_memory=keep_in_memory)
for rank in range(num_proc)
]
kwds_per_shard = [
dict(
self=shards[rank],
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=format_cache_file_name(cache_file_name, rank)
if cache_file_name is not None
else None,
writer_batch_size=writer_batch_size,
features=features.copy() if features is not None else None,
disable_nullable=disable_nullable,
fn_kwargs=fn_kwargs,
rank=rank,
offset=sum(len(s) for s in shards[:rank]),
update_data=update_data,
)
for rank in range(num_proc)
]
logger.info("Spawning {} processes".format(num_proc))
results = [pool.apply_async(self.__class__._map_single, kwds=kwds) for kwds in kwds_per_shard]
transformed_shards = [r.get() for r in results]
logger.info("Concatenating {} shards from multiprocessing".format(num_proc))
result = concatenate_datasets(transformed_shards)
if new_fingerprint is not None:
result._fingerprint = new_fingerprint
return result
@transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["load_from_cache_file", "cache_file_name"])
def _map_single(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[List[str]] = None,
keep_in_memory: bool = False,
load_from_cache_file: bool = None,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
fn_kwargs: Optional[dict] = None,
new_fingerprint: Optional[str] = None,
rank: Optional[int] = None,
offset: int = 0,
update_data=True,
) -> "Dataset":
"""Apply a function to all the elements in the table (individually or in batches)
and update the table (if function does updated examples).
Args:
function (`callable`): with one of the following signature:
- `function(example: Union[Dict, Any]) -> Union[Dict, Any]` if `batched=False` and `with_indices=False`
- `function(example: Union[Dict, Any], indices: int) -> Union[Dict, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Union[Dict[List], List[Any]]) -> Union[Dict, Any]` if `batched=True` and `with_indices=False`
- `function(batch: Union[Dict[List], List[Any]], indices: List[int]) -> Union[Dict, Any]` if `batched=True` and `with_indices=True`
If no function is provided, default to identity function: lambda x: x
with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`): Provide batch of examples to `function`
batch_size (`Optional[int]`, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True`
`batch_size <= 0` or `batch_size == None`: Provide the full dataset as a single batch to `function`
drop_last_batch (`bool`, default: `False`): Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`Optional[List[str]]`, defaults to `None`): Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`bool`, defaults to `True` if caching is enabled): If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
features (`Optional[datasets.Features]`, defaults to `None`): Use a specific Features to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `True`): Disallow null values in the table.
fn_kwargs (`Optional[Dict]`, defaults to `None`): Keyword arguments to be passed to `function`
new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
rank: (`Optional[int]`, defaults to `None`): If specified, this is the process rank when doing multiprocessing
offset: (`int`, defaults to 0): If specified, this is an offset applied to the indices passed to `function` if `with_indices=True`
update_data (`bool`, defaults to `True`): If False, no new arrow table will be created
"""
assert (
not keep_in_memory or cache_file_name is None
), "Please use either `keep_in_memory` or `cache_file_name` but not both."
not_verbose = bool(logger.getEffectiveLevel() > WARNING)
# Reduce logging to keep things readable in multiprocessing with tqdm
if rank is not None and get_verbosity() < WARNING:
set_verbosity_warning()
# Print at least one thing to fix tqdm in notebooks in multiprocessing
# see https://github.com/tqdm/tqdm/issues/485#issuecomment-473338308
if rank is not None and "notebook" in tqdm.__name__:
print(" ", end="", flush=True)
# Select the columns (arrow columns) to process
if remove_columns is not None and any(col not in self._data.column_names for col in remove_columns):
raise ValueError(
"Column to remove {} not in the dataset. Current columns in the dataset: {}".format(
list(filter(lambda col: col not in self._data.column_names, remove_columns)),
self._data.column_names,
)
)
load_from_cache_file = load_from_cache_file if load_from_cache_file is not None else is_caching_enabled()
if isinstance(input_columns, str):
input_columns = [input_columns]
if input_columns is not None:
for input_column in input_columns:
if input_column not in self._data.column_names:
raise ValueError(
"Input column {} not in the dataset. Current columns in the dataset: {}".format(
input_column, self._data.column_names
)
)
if fn_kwargs is None:
fn_kwargs = {}
# If we do batch computation but no batch size is provided, default to the full dataset
if batched and (batch_size is None or batch_size <= 0):
batch_size = self.num_rows
class NumExamplesMismatch(Exception):
pass
def apply_function_on_filtered_inputs(inputs, indices, check_same_num_examples=False, offset=0):
""" Utility to apply the function on a selection of columns. """
fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns]
if offset == 0:
effective_indices = indices
else:
effective_indices = [i + offset for i in indices] if isinstance(indices, list) else indices + offset
processed_inputs = (
function(*fn_args, effective_indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs)
)
if not update_data:
return None # Nothing to update, let's move on
if remove_columns is not None:
for column in remove_columns:
inputs.pop(column)
if self._format_type is not None:
inputs = self._getitem(
key=(indices if isinstance(indices, int) else slice(indices[0], indices[-1] + 1)),
format_type=None,
format_columns=None,
format_kwargs=None,
)
if check_same_num_examples:
input_num_examples = len(inputs[next(iter(inputs.keys()))])
processed_inputs_num_examples = len(processed_inputs[next(iter(processed_inputs.keys()))])
if input_num_examples != processed_inputs_num_examples:
raise NumExamplesMismatch()
inputs.update(processed_inputs)
return inputs
# Check if we've already cached this computation (indexed by a hash)
if update_data and self._data_files:
if cache_file_name is None:
# we create a unique hash from the function, current dataset file and the mapping args
cache_file_name = self._get_cache_file_path(new_fingerprint)
if os.path.exists(cache_file_name) and load_from_cache_file:
logger.warning("Loading cached processed dataset at %s", cache_file_name)
info = self.info.copy()
info.features = features
return Dataset.from_file(cache_file_name, info=info, split=self.split)
# Prepare output buffer and batched writer in memory or on file if we update the table
if update_data:
if features is None:
features = self.features
update_features = True
else:
update_features = False
if keep_in_memory or cache_file_name is None:
buf_writer = pa.BufferOutputStream()
tmp_file = None
writer = ArrowWriter(
features=features,
stream=buf_writer,
writer_batch_size=writer_batch_size,
update_features=update_features,
fingerprint=new_fingerprint,
disable_nullable=disable_nullable,
)
else:
buf_writer = None
logger.info("Caching processed dataset at %s", cache_file_name)
tmp_file = tempfile.NamedTemporaryFile("wb", dir=os.path.dirname(cache_file_name), delete=False)
writer = ArrowWriter(
features=features,
path=tmp_file.name,
writer_batch_size=writer_batch_size,
update_features=update_features,
fingerprint=new_fingerprint,
disable_nullable=disable_nullable,
)
else:
# we don't need a writer so we use an empty context
writer = contextlib.ExitStack()
with writer:
try:
# Loop over single examples or batches and write to buffer/file if examples are to be updated
pbar_iterable = self if not batched else range(0, len(self), batch_size)
pbar_unit = "ex" if not batched else "ba"
pbar_desc = "#" + str(rank) if rank is not None else None
pbar = tqdm(pbar_iterable, disable=not_verbose, position=rank, unit=pbar_unit, desc=pbar_desc)
if not batched:
for i, example in enumerate(pbar):
example = apply_function_on_filtered_inputs(example, i, offset=offset)
if update_data:
example = cast_to_python_objects(example)
writer.write(example)
else:
for i in pbar:
if drop_last_batch and i + batch_size > self.num_rows:
continue
batch = self[i : i + batch_size]
indices = list(range(*(slice(i, i + batch_size).indices(self.num_rows)))) # Something simpler?
try:
batch = apply_function_on_filtered_inputs(
batch, indices, check_same_num_examples=len(self.list_indexes()) > 0, offset=offset
)
except NumExamplesMismatch:
raise DatasetTransformationNotAllowedError(
"Using `.map` in batched mode on a dataset with attached indexes is allowed only if it doesn't create or remove existing examples. You can first run `.drop_index() to remove your index and then re-add it."
)
if update_data:
batch = cast_to_python_objects(batch)
writer.write_batch(batch)
if update_data:
writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file
except (Exception, KeyboardInterrupt):
if update_data:
writer.finalize()
if update_data and tmp_file is not None:
tmp_file.close()
if os.path.exists(tmp_file.name):
os.remove(tmp_file.name)
raise
if update_data and tmp_file is not None:
tmp_file.close()
shutil.move(tmp_file.name, cache_file_name)
if update_data:
# Create new Dataset from buffer or file
info = self.info.copy()
info.features = writer._features
if buf_writer is None:
return Dataset.from_file(cache_file_name, info=info, split=self.split)
else:
return Dataset.from_buffer(buf_writer.getvalue(), info=info, split=self.split)
else:
return self
[docs] @transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["load_from_cache_file", "cache_file_name"])
def filter(
self,
function: Optional[Callable] = None,
with_indices=False,
input_columns: Optional[Union[str, List[str]]] = None,
batch_size: Optional[int] = 1000,
remove_columns: Optional[List[str]] = None,
keep_in_memory: bool = False,
load_from_cache_file: bool = True,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
suffix_template: str = "_{rank:05d}_of_{num_proc:05d}",
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Apply a filter function to all the elements in the table in batches
and update the table so that the dataset only includes examples according to the filter function.
Args:
function (`callable`): with one of the following signature:
- `function(example: Union[Dict, Any]) -> bool` if `with_indices=False`
- `function(example: Union[Dict, Any], indices: int) -> bool` if `with_indices=True`
If no function is provided, default to an always True function: lambda x: True
with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batch_size (`Optional[int]`, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True`
`batch_size <= 0` or `batch_size == None`: Provide the full dataset as a single batch to `function`
remove_columns (`Optional[List[str]]`, defaults to `None`): Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
fn_kwargs (`Optional[Dict]`, defaults to `None`): Keyword arguments to be passed to `function`
num_proc (`Optional[int]`, defaults to `None`): Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
suffix_template (`str`, defaults to "_{rank:05d}_of_{num_proc:05d}"): If cache_file_name is specified, then this suffix
will be added at the end of the base name of each. For example, if cache_file_name is "processed.arrow", then for
rank=1 and num_proc=4, the resulting file would be "processed_00001_of_00004.arrow" for the default suffix.
new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.filter` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it.`"
)
if function is None:
function = lambda x: True # noqa: E731
if isinstance(input_columns, str):
input_columns = [input_columns]
if input_columns is not None:
for input_column in input_columns:
if input_column not in self._data.column_names:
raise ValueError(
"Input column {} not in the dataset. Current columns in the dataset: {}".format(
input_column, self._data.column_names
)
)
if fn_kwargs is None:
fn_kwargs = {}
fn_kwargs["input_columns"] = input_columns
# return map function
return self.map(
partial(map_function, function=function, with_indices=with_indices),
batched=True,
with_indices=with_indices,
features=self.features,
batch_size=batch_size,
remove_columns=remove_columns,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_name,
writer_batch_size=writer_batch_size,
fn_kwargs=fn_kwargs,
num_proc=num_proc,
suffix_template=suffix_template,
new_fingerprint=new_fingerprint,
)
[docs] @transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["cache_file_name"])
def flatten_indices(
self,
keep_in_memory: bool = False,
cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = True,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create and cache a new Dataset by flattening the indices mapping.
Args:
keep_in_memory (`bool`, default: `False`): Keep the dataset in memory instead of writing it to a cache file.
cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
features (`Optional[datasets.Features]`, default: `None`): Use a specific Features to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, default: `True`): Allow null values in the table.
new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
return self.map(
batched=True, # for speed
keep_in_memory=keep_in_memory,
cache_file_name=cache_file_name,
writer_batch_size=writer_batch_size,
features=features,
disable_nullable=disable_nullable,
new_fingerprint=new_fingerprint,
)
def _new_dataset_with_indices(
self,
indices_cache_file_name: Optional[str] = None,
indices_buffer: Optional[pa.Buffer] = None,
fingerprint: Optional[str] = None,
) -> "Dataset":
""" Return a new Dataset obtained by adding indices (provided in indices_cache_file_name or in a buffer) to the current Dataset. """
assert (
indices_cache_file_name is not None or indices_buffer is not None
), "At least one of indices_cache_file_name or indices_buffer must be provided."
assert fingerprint is not None, "please specify a fingerprint for the dataset with indices"
data_files = self._data_files
if indices_cache_file_name is not None:
indices_mmap = pa.memory_map(indices_cache_file_name)
if data_files is None:
data_files = []
indices_data_files = [{"filename": indices_cache_file_name}]
else:
indices_mmap = pa.BufferReader(indices_buffer)
indices_data_files = None
indices_f = pa.ipc.open_stream(indices_mmap)
indices_pa_table = indices_f.read_all()
# Return new Dataset object
# don't forget to copy the objects
return Dataset(
self._data,
data_files=copy.deepcopy(data_files),
info=self.info.copy(),
split=self.split,
indices_table=indices_pa_table,
indices_data_files=copy.deepcopy(indices_data_files),
fingerprint=fingerprint,
inplace_history=copy.deepcopy(
self._inplace_history
), # in-place transforms have to be kept as we kept the same data_files
)
[docs] @transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["indices_cache_file_name"])
def select(
self,
indices: Iterable,
keep_in_memory: bool = False,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new dataset with rows selected following the list/array of indices.
Args:
`indices` (sequence, iterable, ndarray or Series): List or 1D-array of integer indices for indexing.
`keep_in_memory` (`bool`, default: `False`): Keep the indices mapping in memory instead of writing it to a cache file.
`indices_cache_file_name` (`Optional[str]`, default: `None`): Provide the name of a path for the cache file. It is used to store the
indices mapping instead of the automatically generated cache file name.
`writer_batch_size` (`int`, default: `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
assert (
not keep_in_memory or indices_cache_file_name is None
), "Please use either `keep_in_memory` or `indices_cache_file_name` but not both."
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
# Prepare the writer for our indices arrow table
if keep_in_memory or indices_cache_file_name is None:
buf_writer = pa.BufferOutputStream()
tmp_file = None
writer = ArrowWriter(
stream=buf_writer, writer_batch_size=writer_batch_size, fingerprint=new_fingerprint, unit="indices"
)
else:
buf_writer = None
logger.info("Caching indices mapping at %s", indices_cache_file_name)
tmp_file = tempfile.NamedTemporaryFile("wb", dir=os.path.dirname(indices_cache_file_name), delete=False)
writer = ArrowWriter(
path=tmp_file.name, writer_batch_size=writer_batch_size, fingerprint=new_fingerprint, unit="indices"
)
indices_array = pa.array(indices, type=pa.uint64())
# Check if we need to convert indices
if self._indices is not None:
if PYARROW_V0:
indices_array = pa.concat_tables(self._indices.slice(i.as_py(), 1) for i in indices_array).column(0)
else:
indices_array = self._indices.column(0).take(indices_array)
indices_table = pa.Table.from_arrays([indices_array], names=["indices"])
with writer:
try:
writer.write_table(indices_table)
writer.finalize() # close_stream=bool(buf_writer is None)) We only close if we are writing in a file
except (Exception, KeyboardInterrupt):
if tmp_file is not None:
tmp_file.close()
if os.path.exists(tmp_file.name):
os.remove(tmp_file.name)
raise
if tmp_file is not None:
tmp_file.close()
shutil.move(tmp_file.name, indices_cache_file_name)
# Return new Dataset object
if buf_writer is None:
return self._new_dataset_with_indices(
indices_cache_file_name=indices_cache_file_name, fingerprint=new_fingerprint
)
else:
return self._new_dataset_with_indices(indices_buffer=buf_writer.getvalue(), fingerprint=new_fingerprint)
[docs] @transmit_format
@fingerprint_transform(inplace=False, ignore_kwargs=["load_from_cache_file", "indices_cache_file_name"])
def sort(
self,
column: str,
reverse: bool = False,
kind: str = None,
keep_in_memory: bool = False,
load_from_cache_file: bool = True,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new dataset sorted according to a column.
Currently sorting according to a column name uses numpy sorting algorithm under the hood.
The column should thus be a numpy compatible type (in particular not a nested type).
This also means that the column used for sorting is fully loaded in memory (which should be fine in most cases).
Args:
column (`str`): column name to sort by.
reverse: (`bool`, defaults to `False`): If True, sort by descending order rather then ascending.
kind (Optional `str`): Numpy algorithm for sorting selected in {‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’},
The default is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in general,
the actual implementation will vary with data type. The ‘mergesort’ option is retained for backwards compatibility.
keep_in_memory (`bool`, defaults to `False`): Keep the sorted indices in memory instead of writing it to a cache file.
load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the sorted indices
can be identified, use it instead of recomputing.
indices_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
sorted indices instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory.
new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.sort` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
# Check the column name
if not isinstance(column, str) or column not in self._data.column_names:
raise ValueError(
"Column '{}' not found in the dataset. Please provide a column selected in: {}".format(
column,
self._data.column_names,
)
)
# Check if we've already cached this computation (indexed by a hash)
if self._data_files:
if indices_cache_file_name is None:
# we create a unique hash from the function, current dataset file and the mapping args
indices_cache_file_name = self._get_cache_file_path(new_fingerprint)
if os.path.exists(indices_cache_file_name) and load_from_cache_file:
logger.warning("Loading cached sorted indices for dataset at %s", indices_cache_file_name)
return self._new_dataset_with_indices(
fingerprint=new_fingerprint, indices_cache_file_name=indices_cache_file_name
)
column_data = self._getitem(
column, format_type="numpy", format_columns=None, output_all_columns=False, format_kwargs=None
)
indices = np.argsort(column_data, kind=kind)
if reverse:
indices = indices[::-1]
return self.select(
indices=indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=new_fingerprint,
)
[docs] @transmit_format
@fingerprint_transform(
inplace=False, randomized_function=True, ignore_kwargs=["load_from_cache_file", "indices_cache_file_name"]
)
def shuffle(
self,
seed: Optional[int] = None,
generator: Optional[np.random.Generator] = None,
keep_in_memory: bool = False,
load_from_cache_file: bool = True,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
new_fingerprint: Optional[str] = None,
) -> "Dataset":
"""Create a new Dataset where the rows are shuffled.
Currently shuffling uses numpy random generators.
You can either supply a NumPy BitGenerator to use, or a seed to initiate NumPy's default random generator (PCG64).
Args:
seed (Optional `int`): A seed to initialize the default BitGenerator if ``generator=None``.
If None, then fresh, unpredictable entropy will be pulled from the OS.
If an int or array_like[ints] is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state.
generator (Optional `np.random.Generator`): Numpy random Generator to use to compute the permutation of the dataset rows.
If ``generator=None`` (default), uses np.random.default_rng (the default BitGenerator (PCG64) of NumPy).
keep_in_memory (`bool`, defaults to `False`): Keep the shuffled indices in memory instead of writing it to a cache file.
load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the shuffled indices
can be identified, use it instead of recomputing.
indices_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
shuffled indices instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.shuffle` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return self
if seed is not None and generator is not None:
raise ValueError("Both `seed` and `generator` were provided. Please specify just one of them.")
assert generator is None or isinstance(
generator, np.random.Generator
), "The provided generator must be an instance of numpy.random.Generator"
if generator is None:
if seed is None:
seed = np.random.get_state()[1][0]
_ = np.random.random() # do 1 step of rng
generator = np.random.default_rng(seed)
# Check if we've already cached this computation (indexed by a hash)
if self._data_files:
if indices_cache_file_name is None:
# we create a unique hash from the function, current dataset file and the mapping args
indices_cache_file_name = self._get_cache_file_path(new_fingerprint)
if os.path.exists(indices_cache_file_name) and load_from_cache_file:
logger.warning("Loading cached shuffled indices for dataset at %s", indices_cache_file_name)
return self._new_dataset_with_indices(
fingerprint=new_fingerprint, indices_cache_file_name=indices_cache_file_name
)
permutation = generator.permutation(len(self))
return self.select(
indices=permutation,
keep_in_memory=keep_in_memory,
indices_cache_file_name=indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=new_fingerprint,
)
[docs] @transmit_format
@fingerprint_transform(
inplace=False,
randomized_function=True,
fingerprint_names=["train_new_fingerprint", "test_new_fingerprint"],
ignore_kwargs=["load_from_cache_file", "train_indices_cache_file_name", "test_indices_cache_file_name"],
)
def train_test_split(
self,
test_size: Union[float, int, None] = None,
train_size: Union[float, int, None] = None,
shuffle: bool = True,
seed: Optional[int] = None,
generator: Optional[np.random.Generator] = None,
keep_in_memory: bool = False,
load_from_cache_file: bool = True,
train_indices_cache_file_name: Optional[str] = None,
test_indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
train_new_fingerprint: Optional[str] = None,
test_new_fingerprint: Optional[str] = None,
) -> "DatasetDict":
"""Return a dictionary (:obj:`datasets.DatsetDict`) with two random train and test subsets (`train` and `test` ``Dataset`` splits).
Splits are created from the dataset according to `test_size`, `train_size` and `shuffle`.
This method is similar to scikit-learn `train_test_split` with the omission of the stratified options.
Args:
test_size (Optional `np.random.Generator`): Size of the test split
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split.
If int, represents the absolute number of test samples.
If None, the value is set to the complement of the train size.
If train_size is also None, it will be set to 0.25.
train_size (Optional `np.random.Generator`): Size of the train split
If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split.
If int, represents the absolute number of train samples.
If None, the value is automatically set to the complement of the test size.
shuffle (Optional `bool`, defaults to `True`): Whether or not to shuffle the data before splitting.
seed (Optional `int`): A seed to initialize the default BitGenerator if ``generator=None``.
If None, then fresh, unpredictable entropy will be pulled from the OS.
If an int or array_like[ints] is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state.
generator (Optional `np.random.Generator`): Numpy random Generator to use to compute the permutation of the dataset rows.
If ``generator=None`` (default), uses np.random.default_rng (the default BitGenerator (PCG64) of NumPy).
keep_in_memory (`bool`, defaults to `False`): Keep the splits indices in memory instead of writing it to a cache file.
load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the splits indices
can be identified, use it instead of recomputing.
train_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
train split indices instead of the automatically generated cache file name.
test_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
test split indices instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
train_new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the train set after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
test_new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the test set after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
from .dataset_dict import DatasetDict # import here because of circular dependency
if len(self.list_indexes()) > 0:
raise DatasetTransformationNotAllowedError(
"Using `.train_test_split` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it."
)
# If the array is empty we do nothing
if len(self) == 0:
return DatasetDict({"train": self, "test": self})
if test_size is None and train_size is None:
test_size = 0.25
# Safety checks similar to scikit-learn's ones.
# (adapted from https://github.com/scikit-learn/scikit-learn/blob/fd237278e895b42abe8d8d09105cbb82dc2cbba7/sklearn/model_selection/_split.py#L1750)
n_samples = len(self)
if (
isinstance(test_size, int)
and (test_size >= n_samples or test_size <= 0)
or isinstance(test_size, float)
and (test_size <= 0 or test_size >= 1)
):
raise ValueError(
f"test_size={test_size} should be either positive and smaller "
f"than the number of samples {n_samples} or a float in the (0, 1) range"
)
if (
isinstance(train_size, int)
and (train_size >= n_samples or train_size <= 0)
or isinstance(train_size, float)
and (train_size <= 0 or train_size >= 1)
):
raise ValueError(
f"train_size={train_size} should be either positive and smaller "
f"than the number of samples {n_samples} or a float in the (0, 1) range"
)
if train_size is not None and not isinstance(train_size, (int, float)):
raise ValueError(f"Invalid value for train_size: {train_size} of type {type(train_size)}")
if test_size is not None and not isinstance(test_size, (int, float)):
raise ValueError(f"Invalid value for test_size: {test_size} of type {type(test_size)}")
if isinstance(train_size, float) and isinstance(test_size, float) and train_size + test_size > 1:
raise ValueError(
f"The sum of test_size and train_size = {train_size + test_size}, should be in the (0, 1)"
" range. Reduce test_size and/or train_size."
)
if isinstance(test_size, float):
n_test = ceil(test_size * n_samples)
elif isinstance(test_size, int):
n_test = float(test_size)
if isinstance(train_size, float):
n_train = floor(train_size * n_samples)
elif isinstance(train_size, int):
n_train = float(train_size)
if train_size is None:
n_train = n_samples - n_test
elif test_size is None:
n_test = n_samples - n_train
if n_train + n_test > n_samples:
raise ValueError(
f"The sum of train_size and test_size = {n_train + n_test}, "
"should be smaller than the number of "
f"samples {n_samples}. Reduce test_size and/or "
"train_size."
)
n_train, n_test = int(n_train), int(n_test)
if n_train == 0:
raise ValueError(
f"With n_samples={n_samples}, test_size={test_size} and train_size={train_size}, the "
"resulting train set will be empty. Adjust any of the "
"aforementioned parameters."
)
if generator is None and shuffle is True:
if seed is None:
seed = np.random.get_state()[1][0]
_ = np.random.random() # do 1 step of rng
generator = np.random.default_rng(seed)
# Check if we've already cached this computation (indexed by a hash)
if self._data_files:
if train_indices_cache_file_name is None or test_indices_cache_file_name is None:
# we create a unique hash from the function, current dataset file and the mapping args
if train_indices_cache_file_name is None:
train_indices_cache_file_name = self._get_cache_file_path(train_new_fingerprint)
if test_indices_cache_file_name is None:
test_indices_cache_file_name = self._get_cache_file_path(test_new_fingerprint)
if (
os.path.exists(train_indices_cache_file_name)
and os.path.exists(test_indices_cache_file_name)
and load_from_cache_file
):
logger.warning(
"Loading cached split indices for dataset at %s and %s",
train_indices_cache_file_name,
test_indices_cache_file_name,
)
return DatasetDict(
{
"train": self._new_dataset_with_indices(
fingerprint=train_new_fingerprint, indices_cache_file_name=train_indices_cache_file_name
),
"test": self._new_dataset_with_indices(
fingerprint=test_new_fingerprint, indices_cache_file_name=test_indices_cache_file_name
),
}
)
if not shuffle:
train_indices = np.arange(n_train)
test_indices = np.arange(n_train, n_train + n_test)
else:
# random partition
permutation = generator.permutation(len(self))
test_indices = permutation[:n_test]
train_indices = permutation[n_test : (n_test + n_train)]
train_split = self.select(
indices=train_indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=train_indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=train_new_fingerprint,
)
test_split = self.select(
indices=test_indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=test_indices_cache_file_name,
writer_batch_size=writer_batch_size,
new_fingerprint=test_new_fingerprint,
)
return DatasetDict({"train": train_split, "test": test_split})
[docs] def shard(
self,
num_shards: int,
index: int,
contiguous: bool = False,
keep_in_memory: bool = False,
indices_cache_file_name: Optional[str] = None,
writer_batch_size: Optional[int] = 1000,
) -> "Dataset":
"""Return the `index`-nth shard from dataset split into `num_shards` pieces.
This shards deterministically. dset.shard(n, i) will contain all elements of dset whose
index mod n = i.
dset.shard(n, i, contiguous=True) will instead split dset into contiguous chunks,
so it can be easily concatenated back together after processing. If n % i == l, then the
first l shards will have length (n // i) + 1, and the remaining shards will have length (n // i).
`datasets.concatenate([dset.shard(n, i, contiguous=True) for i in range(n)])` will return
a dataset with the same order as the original.
Be sure to shard before using any randomizing operator (such as shuffle).
It is best if the shard operator is used early in the dataset pipeline.
Args:
num_shards (`int`): How many shards to split the dataset into.
index (`int`): Which shard to select and return.
contiguous: (`bool`, defaults to `False`): Whether to select contiguous blocks of indices for shards.
keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
indices_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a path for the cache file. It is used to store the
indices of each shard instead of the automatically generated cache file name.
writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`.
"""
assert 0 <= index < num_shards, "index should be in [0, num_shards-1]"
if contiguous:
div = len(self) // num_shards
mod = len(self) % num_shards
start = div * index + min(index, mod)
end = start + div + (1 if index < mod else 0)
indices = np.arange(start, end)
else:
indices = np.arange(index, len(self), num_shards)
return self.select(
indices=indices,
keep_in_memory=keep_in_memory,
indices_cache_file_name=indices_cache_file_name,
writer_batch_size=writer_batch_size,
)
[docs] def export(
self,
filename: str,
format: str = "tfrecord",
):
"""Writes the Arrow dataset to a TFRecord file.
The dataset must already be in tensorflow format. The records will be written with
keys from `dataset._format_columns`.
Args:
`filename` (`str`): The filename, including the .tfrecord extension, to write to.
`format` (`Optional[str]`, default: `"tfrecord"`): The type of output file. Currently this is a no-op, as
TFRecords are the only option. This enables a more flexible function signature
later.
"""
try:
import tensorflow as tf # noqa: F401
except ImportError:
logger.error("Tensorflow needs to be installed to be able to return Tensorflow tensors.")
# From https://www.tensorflow.org/tutorials/load_data/tfrecord
def _bytes_feature(values):
"""Returns a bytes_list from a list of string / byte."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=values))
def _float_feature(values):
"""Returns a float_list from a list of float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
def _int64_feature(values):
"""Returns an int64_list from a list of bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def _feature(values: Union[float, int, str, np.ndarray]) -> "tf.train.Feature":
"""Typechecks `values` and returns the corresponding tf.train.Feature."""
if isinstance(values, np.ndarray):
if values.dtype == np.dtype(float):
return _float_feature(values)
elif values.dtype == np.int64:
return _int64_feature(values)
elif values.dtype == np.dtype(str) or (
values.dtype == np.dtype(object) and len(values) > 0 and isinstance(values[0], str)
):
return _bytes_feature([v.encode() for v in values])
else:
raise ValueError(
f"values={values} is an np.ndarray with items of dtype {values[0].dtype}, which cannot be serialized"
)
if hasattr(values, "dtype"):
if np.issubdtype(values.dtype, np.floating):
return _float_feature([values.item()])
elif np.issubdtype(values.dtype, np.integer):
return _int64_feature([values.item()])
elif np.issubdtype(values.dtype, np.str):
return _bytes_feature([values.item().encode()])
else:
raise ValueError(f"values={values} has dtype {values.dtype}, which cannot be serialized")
else:
raise ValueError(f"values={values} are not numpy objects, and so cannot be serialized")
def serialize_example(ex):
feature = {key: _feature(value) for key, value in ex.items()}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
def tf_serialize_example(ex):
tf_string = tf.py_function(serialize_example, (ex,), tf.string)
return tf.reshape(tf_string, ())
def generator():
for ex in self:
yield serialize_example(ex)
assert self._format_type == "numpy", "Dataset format must be numpy before exporting"
assert filename.endswith(".tfrecord")
tf_dataset = tf.data.Dataset.from_generator(generator, output_types=tf.string, output_shapes=())
writer = tf.data.experimental.TFRecordWriter(filename)
logger.info(f"Writing TFRecord to {filename}")
writer.write(tf_dataset)
logger.info(f"Finished writing TFRecord to {filename}")
self = None # delete the dataset reference used by tf_dataset
def _write_csv(self, file_obj: BinaryIO, batch_size: int, **to_csv_kwargs) -> int:
"""
Writes the pyarrow table as CSV to a binary file handle.
Caller is responsible for opening and closing the handle.
"""
written = 0
header = to_csv_kwargs.pop("header", True)
encoding = to_csv_kwargs.pop("encoding", "utf-8")
to_csv_kwargs.pop("path_or_buf", None)
for offset in range(0, len(self), batch_size):
batch = query_table(
pa_table=self._data,
key=slice(offset, offset + batch_size),
indices=self._indices.column(0) if self._indices is not None else None,
)
csv_str = batch.to_pandas().to_csv(
path_or_buf=None, header=header if (offset == 0) else False, encoding=encoding, **to_csv_kwargs
)
written += file_obj.write(csv_str.encode(encoding))
return written
[docs] def to_csv(
self,
path_or_buf: Union[PathLike, BinaryIO],
batch_size: Optional[int] = None,
**to_csv_kwargs,
):
"""Exports the dataset to csv
Args:
path_or_buf (``PathLike`` or ``FileOrBuffer``): Either a path to a file or a BinaryIO.
batch_size (Optional ``int``): Size of the batch to load in memory and write at once.
Defaults to :obj:`datasets.config.DEFAULT_MAX_BATCH_SIZE`.
to_csv_kwargs: Parameters to pass to pandas's :func:`pandas.DataFrame.to_csv`
Returns:
int: The number of characters or bytes written
"""
batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(path_or_buf, (str, bytes, os.PathLike)):
with open(path_or_buf, "wb+") as buffer:
written = self._write_csv(file_obj=buffer, batch_size=batch_size, **to_csv_kwargs)
else:
written = self._write_csv(file_obj=path_or_buf, batch_size=batch_size, **to_csv_kwargs)
return written
[docs] def to_dict(self, batch_size: Optional[int] = None, batched: bool = False) -> Union[dict, Iterator[dict]]:
"""Returns the dataset as a Python dict. Can also return a generator for large datasets.
Args:
batched (``bool``): Set to :obj:`True` to return a generator that yields the dataset as batches
of ``batch_size`` rows. Defaults to :obj:`False` (returns the whole datasetas once)
bacth_size (Optional ``int``): The size (number of rows) of the batches if ``batched`` is `True`.
Defaults to :obj:`datasets.config.DEFAULT_MAX_BATCH_SIZE`.
Returns:
`dict` or `Iterator[dict]`
"""
if not batched:
return query_table(
pa_table=self._data,
key=slice(0, len(self)),
indices=self._indices.column(0) if self._indices is not None else None,
).to_pydict()
else:
batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
return (
query_table(
pa_table=self._data,
key=slice(offset, offset + batch_size),
indices=self._indices.column(0) if self._indices is not None else None,
).to_pydict()
for offset in range(0, len(self), batch_size)
)
[docs] def to_pandas(
self, batch_size: Optional[int] = None, batched: bool = False
) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]:
"""Returns the dataset as a :class:`pandas.DataFrame`. Can also return a generator for large datasets.
Args:
batched (``bool``): Set to :obj:`True` to return a generator that yields the dataset as batches
of ``batch_size`` rows. Defaults to :obj:`False` (returns the whole datasetas once)
bacth_size (Optional ``int``): The size (number of rows) of the batches if ``batched`` is `True`.
Defaults to :obj:`datasets.config.DEFAULT_MAX_BATCH_SIZE`.
Returns:
`pandas.DataFrame` or `Iterator[pandas.DataFrame]`
"""
if not batched:
return query_table(
pa_table=self._data,
key=slice(0, len(self)),
indices=self._indices.column(0) if self._indices is not None else None,
).to_pandas()
else:
batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
return (
query_table(
pa_table=self._data,
key=slice(offset, offset + batch_size),
indices=self._indices.column(0) if self._indices is not None else None,
).to_pandas()
for offset in range(0, len(self), batch_size)
)
[docs] def add_faiss_index(
self,
column: str,
index_name: Optional[str] = None,
device: Optional[int] = None,
string_factory: Optional[str] = None,
metric_type: Optional[int] = None,
custom_index: Optional["faiss.Index"] = None, # noqa: F821
train_size: Optional[int] = None,
faiss_verbose: bool = False,
dtype=np.float32,
):
"""Add a dense index using Faiss for fast retrieval.
By default the index is done over the vectors of the specified column.
You can specify :obj:`device` if you want to run it on GPU (:obj:`device` must be the GPU index).
You can find more information about Faiss here:
- For `string factory <https://github.com/facebookresearch/faiss/wiki/The-index-factory>`__
Args:
column (:obj:`str`):
The column of the vectors to add to the index.
index_name (Optional :obj:`str`):
The index_name/identifier of the index.
This is the index_name that is used to call :func:`datasets.Dataset.get_nearest_examples` or :func:`datasets.Dataset.search`.
By default it corresponds to `column`.
device (Optional :obj:`int`):
If not None, this is the index of the GPU to use.
By default it uses the CPU.
string_factory (Optional :obj:`str`):
This is passed to the index factory of Faiss to create the index.
Default index class is ``IndexFlat``.
metric_type (Optional :obj:`int`):
Type of metric. Ex: faiss.faiss.METRIC_INNER_PRODUCT or faiss.METRIC_L2.
custom_index (Optional :obj:`faiss.Index`):
Custom Faiss index that you already have instantiated and configured for your needs.
train_size (Optional :obj:`int`):
If the index needs a training step, specifies how many vectors will be used to train the index.
faiss_verbose (:obj:`bool`, defaults to False):
Enable the verbosity of the Faiss index.
dtype (data-type): The dtype of the numpy arrays that are indexed.
Default is ``np.float32``.
Example::
ds = datasets.load_dataset('crime_and_punish', split='train')
ds_with_embeddings = ds.map(lambda example: {'embeddings': embed(example['line']}))
ds_with_embeddings.add_faiss_index(column='embeddings')
# query
scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('embeddings', embed('my new query'), k=10)
# save index
ds_with_embeddings.save_faiss_index('embeddings', 'my_index.faiss')
ds = datasets.load_dataset('crime_and_punish', split='train')
# load index
ds.load_faiss_index('embeddings', 'my_index.faiss')
# query
scores, retrieved_examples = ds.get_nearest_examples('embeddings', embed('my new query'), k=10)
"""
with self.formatted_as(type="numpy", columns=[column], dtype=dtype):
super().add_faiss_index(
column=column,
index_name=index_name,
device=device,
string_factory=string_factory,
metric_type=metric_type,
custom_index=custom_index,
train_size=train_size,
faiss_verbose=faiss_verbose,
)
return self
[docs] def add_faiss_index_from_external_arrays(
self,
external_arrays: np.array,
index_name: str,
device: Optional[int] = None,
string_factory: Optional[str] = None,
metric_type: Optional[int] = None,
custom_index: Optional["faiss.Index"] = None, # noqa: F821
train_size: Optional[int] = None,
faiss_verbose: bool = False,
dtype=np.float32,
):
"""Add a dense index using Faiss for fast retrieval.
The index is created using the vectors of `external_arrays`.
You can specify `device` if you want to run it on GPU (`device` must be the GPU index).
You can find more information about Faiss here:
- For `string factory <https://github.com/facebookresearch/faiss/wiki/The-index-factory>`__
Args:
external_arrays (:obj:`np.array`):
If you want to use arrays from outside the lib for the index, you can set :obj:`external_arrays`.
It will use :obj:`external_arrays` to create the Faiss index instead of the arrays in the given :obj:`column`.
index_name (:obj:`str`):
The index_name/identifier of the index.
This is the index_name that is used to call :func:`datasets.Dataset.get_nearest_examples` or :func:`datasets.Dataset.search`.
device (Optional :obj:`int`):
If not None, this is the index of the GPU to use.
By default it uses the CPU.
string_factory (Optional :obj:`str`):
This is passed to the index factory of Faiss to create the index.
Default index class is ``IndexFlat``.
metric_type (Optional :obj:`int`):
Type of metric. Ex: faiss.faiss.METRIC_INNER_PRODUCT or faiss.METRIC_L2.
custom_index (Optional :obj:`faiss.Index`):
Custom Faiss index that you already have instantiated and configured for your needs.
train_size (Optional :obj:`int`):
If the index needs a training step, specifies how many vectors will be used to train the index.
faiss_verbose (:obj:`bool`, defaults to False):
Enable the verbosity of the Faiss index.
dtype (:obj:`numpy.dtype`): The dtype of the numpy arrays that are indexed. Default is np.float32.
"""
super().add_faiss_index_from_external_arrays(
external_arrays=external_arrays.astype(dtype),
index_name=index_name,
device=device,
string_factory=string_factory,
metric_type=metric_type,
custom_index=custom_index,
train_size=train_size,
faiss_verbose=faiss_verbose,
)
[docs] def add_elasticsearch_index(
self,
column: str,
index_name: Optional[str] = None,
host: Optional[str] = None,
port: Optional[int] = None,
es_client: Optional["elasticsearch.Elasticsearch"] = None, # noqa: F821
es_index_name: Optional[str] = None,
es_index_config: Optional[dict] = None,
):
"""Add a text index using ElasticSearch for fast retrieval. This is done in-place.
Args:
column (:obj:`str`):
The column of the documents to add to the index.
index_name (Optional :obj:`str`):
The index_name/identifier of the index.
This is the index name that is used to call :func:`datasets.Dataset.get_nearest_examples` or :func:`datasets.Dataset.search`.
By default it corresponds to :obj:`column`.
host (Optional :obj:`str`, defaults to localhost):
host of where ElasticSearch is running
port (Optional :obj:`str`, defaults to 9200):
port of where ElasticSearch is running
es_client (Optional :obj:`elasticsearch.Elasticsearch`):
The elasticsearch client used to create the index if host and port are None.
es_index_name (Optional :obj:`str`):
The elasticsearch index name used to create the index.
es_index_config (Optional :obj:`dict`):
The configuration of the elasticsearch index.
Default config is:
Config::
{
"settings": {
"number_of_shards": 1,
"analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}},
},
"mappings": {
"properties": {
"text": {
"type": "text",
"analyzer": "standard",
"similarity": "BM25"
},
}
},
}
Example::
es_client = elasticsearch.Elasticsearch()
ds = datasets.load_dataset('crime_and_punish', split='train')
ds.add_elasticsearch_index(column='line', es_client=es_client, es_index_name="my_es_index")
scores, retrieved_examples = ds.get_nearest_examples('line', 'my new query', k=10)
"""
with self.formatted_as(type=None, columns=[column]):
super().add_elasticsearch_index(
column=column,
index_name=index_name,
host=host,
port=port,
es_client=es_client,
es_index_name=es_index_name,
es_index_config=es_index_config,
)
return self
[docs]def concatenate_datasets(
dsets: List[Dataset],
info: Optional[Any] = None,
split: Optional[Any] = None,
):
"""
Converts a list of :obj:``datasets.Dataset`` with the same schema into a single :obj:``datasets.Dataset``.
Args:
dsets (:obj:``List[datasets.Dataset]``): A list of Datasets to concatenate
info (:obj:``datasets.DatasetInfo``, `optional`, defaults to :obj:``None``): If specified, the dataset info containing info like
description, citation, etc.
split (:obj:``datasets.NamedSplit``, `optional`, defaults to :obj:``None``): If specified, the name of the dataset split.
"""
if not all([dset.features.type == dsets[0].features.type for dset in dsets]):
raise ValueError("Features must match for all datasets")
# Datasets tables should all come from disk or memory, but not a mix
dsets_in_memory = [not dset._data_files for dset in dsets]
if any(dset_in_memory != dsets_in_memory[0] for dset_in_memory in dsets_in_memory):
raise ValueError(
"Datasets should ALL come from memory, or should ALL come from disk.\n"
"However datasets {} come from memory and datasets {} come from disk.".format(
[i for i in range(len(dsets)) if dsets_in_memory[i]],
[i for i in range(len(dsets)) if not dsets_in_memory[i]],
)
)
# Find common format or reset format
format = dsets[0].format
if any(dset.format != format for dset in dsets):
format = {}
logger.info("Some of the datasets have disparate format. Resetting the format of the concatenated dataset.")
# Concatenate tables
table = pa.concat_tables(dset._data for dset in dsets if len(dset._data) > 0)
data_files = [copy.deepcopy(f) for dset in dsets for f in dset._data_files]
inplace_history = [copy.deepcopy(h) for dset in dsets for h in dset._inplace_history]
def apply_offset_to_indices_table(table, offset):
if offset == 0:
return table
else:
array = table["indices"]
if isinstance(array, pa.ChunkedArray):
new_array = pa.array(np.concatenate([c.to_numpy() for c in array.chunks]) + offset, pa.uint64())
else:
new_array = pa.array(array.to_numpy() + offset, pa.uint64())
return pa.Table.from_arrays([new_array], names=["indices"])
# Concatenate indices if they exist
if any(dset._indices is not None for dset in dsets):
# Datasets indices tables should all come from disk or memory, but not a mix
# Datasets with no indices tables are replaced with a dataset with an indicies table in memory
indices_mappings_in_memory = [not dset._indices_data_files for dset in dsets]
if any(
indices_mapping_in_memory != indices_mappings_in_memory[0]
for indices_mapping_in_memory in indices_mappings_in_memory
):
raise ValueError(
"Datasets' indices should ALL come from memory, or should ALL come from disk.\n"
"However datasets' indices {} come from memory and datasets' indices {} come from disk.".format(
[i for i in range(len(dsets)) if indices_mappings_in_memory[i]],
[i for i in range(len(dsets)) if not indices_mappings_in_memory[i]],
)
)
indices_in_memory = indices_mappings_in_memory[0]
# Create missing indices tables in memory
if indices_in_memory:
for i in range(len(dsets)):
if dsets[i]._indices is None:
dsets[i] = dsets[i].select(range(len(dsets[i])))
assert all(dset._indices is not None for dset in dsets), "each dataset should have an indices table"
# An offset needs to be applied to the indices before concatenating
indices_tables = []
offset = 0
for dset in dsets:
indices_tables.append(apply_offset_to_indices_table(dset._indices, offset))
offset += len(dset._data)
# Concatenate indices
indices_tables = [t for t in indices_tables if len(t) > 0]
if indices_tables:
indices_table = pa.concat_tables(indices_tables)
else:
indices_table = pa.Table.from_batches([], schema=pa.schema({"indices": pa.int64()}))
else:
indices_table = None
if info is None:
info = DatasetInfo.from_merge([dset.info for dset in dsets])
fingerprint = update_fingerprint(
"".join(dset._fingerprint for dset in dsets), concatenate_datasets, {"info": info, "split": split}
)
concatenated_dataset = Dataset(
table,
info=info,
split=split,
data_files=data_files,
indices_table=indices_table,
indices_data_files=None, # can't reuse same files as an offset was applied
fingerprint=fingerprint,
inplace_history=inplace_history,
)
concatenated_dataset.set_format(**format)
return concatenated_dataset
# This is outside Dataset.filter as it needs to be picklable for multiprocessing
# transform the filter function into the map function
def map_function(batch, *args, function=None, with_indices=None, **fn_kwargs):
assert function is not None and with_indices is not None
result = defaultdict(list)
num_examples = len(batch[next(iter(batch.keys()))])
input_columns = fn_kwargs.pop("input_columns", None)
# create single examples
for i in range(num_examples):
example = map_nested(lambda x: x[i], batch, dict_only=True)
fn_args = [example] if input_columns is None else [example[col] for col in input_columns]
# check if example should be filtered or not
if with_indices:
keep_example = function(*fn_args, args[0][i], **fn_kwargs)
else:
keep_example = function(*fn_args, **fn_kwargs)
assert isinstance(
keep_example, bool
), f"The filter function returns a variable of type {type(keep_example)}, but should return a variable of type `bool`."
# if example shall be kept add to result
if keep_example:
for key in batch.keys():
result[key].append(example[key])
# if no example shall be kept, init with empty list
if bool(result) is False:
for key in batch.keys():
result[key] = []
return result