Dataset features¶
datasets.Features
defines the internal structure of a dataset. The datasets.Features
is used to specify the underlying serialization format. What’s more interesting to you though is that datasets.Features
contains high-level information about everything from the column names and types, to the datasets.ClassLabel
. You can think of datasets.Features
as the backbone of a dataset.
The datasets.Features
format is simple: dict[column_name, column_type]
. It is a dictionary of column name and column type pairs. The column type provides a wide range of options for describing the type of data you have.
Let’s have a look at the features of the MRPC dataset from the GLUE benchmark:
>>> from datasets import load_dataset
>>> dataset = load_dataset('glue', 'mrpc', split='train')
>>> dataset.features
{'idx': Value(dtype='int32', id=None),
'label': ClassLabel(num_classes=2, names=['not_equivalent', 'equivalent'], names_file=None, id=None),
'sentence1': Value(dtype='string', id=None),
'sentence2': Value(dtype='string', id=None),
}
The datasets.Value
feature tells 🤗 Datasets:
The
idx
data type isint32
.The
sentence1
andsentence2
data types arestring
.
🤗 Datasets supports many other data types such as bool
, float32
and binary
to name just a few.
See also
Refer to datasets.Value
for a full list of supported data types.
The datasets.ClassLabel
feature informs 🤗 Datasets the label
column contains two classes. The classes are labeled not_equivalent
and equivalent
. Labels are stored as integers in the dataset. When you retrieve the labels, datasets.ClassLabel.int2str()
and datasets.ClassLabel.str2int()
carries out the conversion from integer value to label name, and vice versa.
If your data type contains a list of objects, then you want to use the datasets.Sequence
feature. Remember the SQuAD dataset?
>>> from datasets import load_dataset
>>> dataset = load_dataset('squad', split='train')
>>> dataset.features
{'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None),
'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None),
'title': Value(dtype='string', id=None)}
The answers
field is constructed using the datasets.Sequence
feature because it contains two subfields, text
and answer_start
, which are lists of string
and int32
, respectively.
Tip
See the Flatten section to learn how you can extract the nested subfields as their own independent columns.