Source code for datasets.features

# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
""" This class handle features definition in datasets and some utilities to display table type."""
from collections.abc import Iterable
from dataclasses import dataclass, field, fields
from typing import Any, ClassVar, Dict, List, Optional, Sequence, Tuple, Union

import numpy as np
import pandas as pd
import pyarrow as pa
from pandas.api.extensions import ExtensionArray as PandasExtensionArray
from pandas.api.extensions import ExtensionDtype as PandasExtensionDtype

from . import utils
from .utils.file_utils import _tf_available, _torch_available
from .utils.logging import get_logger


logger = get_logger(__name__)


if _torch_available:
    import torch

if _tf_available:
    import tensorflow as tf


def string_to_arrow(type_str: str) -> pa.DataType:
    if type_str not in pa.__dict__:
        if str(type_str + "_") not in pa.__dict__:
            raise ValueError(
                f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
                f"Please make sure to use a correct data type, see: "
                f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
            )
        arrow_data_type_str = str(type_str + "_")
    else:
        arrow_data_type_str = type_str

    return pa.__dict__[arrow_data_type_str]()


def _cast_to_python_objects(obj: Any) -> Tuple[Any, bool]:
    """
    Cast numpy/pytorch/tensorflow/pandas objects to python lists.
    It works recursively.

    To avoid iterating over possibly long lists, it first checks if the first element that is not None has to be casted.
    If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same.
    This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example.

    Args:
        obj: the object (nested struct) to cast

    Returns:
        casted_obj: the casted object
        has_changed (bool): True if the object has been changed, False if it is identical
    """
    if isinstance(obj, np.ndarray):
        return obj.tolist(), True
    elif _torch_available and isinstance(obj, torch.Tensor):
        return obj.detach().cpu().numpy().tolist(), True
    elif _tf_available and isinstance(obj, tf.Tensor):
        return obj.numpy().tolist(), True
    elif isinstance(obj, pd.Series):
        return obj.values.tolist(), True
    elif isinstance(obj, pd.DataFrame):
        return obj.to_dict("list"), True
    elif isinstance(obj, dict):
        output = {}
        has_changed = False
        for k, v in obj.items():
            casted_v, has_changed_v = _cast_to_python_objects(v)
            has_changed |= has_changed_v
            output[k] = casted_v
        return output if has_changed else obj, has_changed
    elif isinstance(obj, (list, tuple)):
        if len(obj) > 0:
            for first_elmt in obj:
                if first_elmt is not None:
                    break
            casted_first_elmt, has_changed_first_elmt = _cast_to_python_objects(first_elmt)
            if has_changed_first_elmt:
                return [_cast_to_python_objects(elmt)[0] for elmt in obj], True
            else:
                if isinstance(obj, list):
                    return obj, False
                else:
                    return list(obj), True
        else:
            return obj if isinstance(obj, list) else [], isinstance(obj, tuple)
    else:
        return obj, False


def cast_to_python_objects(obj: Any) -> Any:
    """
    Cast numpy/pytorch/tensorflow/pandas objects to python lists.
    It works recursively.

    To avoid iterating over possibly long lists, it first checks if the first element that is not None has to be casted.
    If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same.
    This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example.

    Args:
        obj: the object (nested struct) to cast

    Returns:
        casted_obj: the casted object
    """
    return _cast_to_python_objects(obj)[0]


[docs]@dataclass class Value: """Encapsulate an Arrow datatype for easy serialization.""" dtype: str id: Optional[str] = None # Automatically constructed pa_type: ClassVar[Any] = None _type: str = field(default="Value", init=False, repr=False) def __post_init__(self): if self.dtype == "double": # fix inferred type self.dtype = "float64" if self.dtype == "float": # fix inferred type self.dtype = "float32" self.pa_type = string_to_arrow(self.dtype) def __call__(self): return self.pa_type def encode_example(self, value): if pa.types.is_boolean(self.pa_type): return bool(value) elif pa.types.is_integer(self.pa_type): return int(value) elif pa.types.is_floating(self.pa_type): return float(value) else: return value
class _ArrayXD: def __post_init__(self): self.shape = tuple(self.shape) def __call__(self): pa_type = globals()[self.__class__.__name__ + "ExtensionType"](self.shape, self.dtype) return pa_type def encode_example(self, value): if isinstance(value, np.ndarray): value = value.tolist() return value
[docs]@dataclass class Array2D(_ArrayXD): shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array2D", init=False, repr=False)
[docs]@dataclass class Array3D(_ArrayXD): shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array3D", init=False, repr=False)
[docs]@dataclass class Array4D(_ArrayXD): shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array4D", init=False, repr=False)
[docs]@dataclass class Array5D(_ArrayXD): shape: tuple dtype: str id: Optional[str] = None # Automatically constructed _type: str = field(default="Array5D", init=False, repr=False)
class _ArrayXDExtensionType(pa.PyExtensionType): ndims: int = None def __init__(self, shape: tuple, dtype: str): assert ( self.ndims is not None and self.ndims > 1 ), "You must instantiate an array type with a value for dim that is > 1" assert len(shape) == self.ndims, "shape={} and ndims={} dom't match".format(shape, self.ndims) self.shape = tuple(shape) self.value_type = dtype self.storage_dtype = self._generate_dtype(self.value_type) pa.PyExtensionType.__init__(self, self.storage_dtype) def __reduce__(self): return self.__class__, ( self.shape, self.value_type, ) def __arrow_ext_class__(self): return ArrayExtensionArray def _generate_dtype(self, dtype): dtype = string_to_arrow(dtype) for d in reversed(self.shape): dtype = pa.list_(dtype) # Don't specify the size of the list, since fixed length list arrays have issues # being validated after slicing in pyarrow 0.17.1 return dtype def to_pandas_dtype(self): return PandasArrayExtensionDtype(self.value_type) class Array2DExtensionType(_ArrayXDExtensionType): ndims = 2 class Array3DExtensionType(_ArrayXDExtensionType): ndims = 3 class Array4DExtensionType(_ArrayXDExtensionType): ndims = 4 class Array5DExtensionType(_ArrayXDExtensionType): ndims = 5 class ArrayExtensionArray(pa.ExtensionArray): def __array__(self): return self.to_numpy() def __getitem__(self, i): return self.storage[i] def to_numpy(self): storage: pa.FixedSizeListArray = self.storage size = 1 for i in range(self.type.ndims): size *= self.type.shape[i] storage = storage.flatten() numpy_arr = storage.to_numpy() numpy_arr = numpy_arr.reshape(len(self), *self.type.shape) return numpy_arr def to_pylist(self): return self.to_numpy().tolist() class PandasArrayExtensionDtype(PandasExtensionDtype): _metadata = "value_type" def __init__(self, value_type: Union["PandasArrayExtensionDtype", np.dtype]): self._value_type = value_type def __from_arrow__(self, array): if isinstance(array, pa.ChunkedArray): numpy_arr = np.vstack([chunk.to_numpy() for chunk in array.chunks]) else: numpy_arr = array.to_numpy() return PandasArrayExtensionArray(numpy_arr) @classmethod def construct_array_type(cls): return PandasArrayExtensionArray @property def type(self) -> type: return np.ndarray @property def kind(self) -> str: return "O" @property def name(self) -> str: return f"array[{self.value_type}]" @property def value_type(self) -> np.dtype: return self._value_type class PandasArrayExtensionArray(PandasExtensionArray): def __init__(self, data: np.ndarray, copy: bool = False): self._data = data if not copy else np.array(data) self._dtype = PandasArrayExtensionDtype(data.dtype) def copy(self, deep: bool = False) -> "PandasArrayExtensionArray": return PandasArrayExtensionArray(self._data, copy=True) @classmethod def _from_sequence( cls, scalars, dtype: Optional[PandasArrayExtensionDtype] = None, copy: bool = False ) -> "PandasArrayExtensionArray": data = np.array(scalars, dtype=dtype if dtype is None else dtype.value_type, copy=copy) return PandasArrayExtensionArray(data, dtype=dtype, copy=copy) @classmethod def _concat_same_type(cls, to_concat: Sequence["PandasArrayExtensionArray"]) -> "PandasArrayExtensionArray": data = np.vstack([va._data for va in to_concat]) return cls(data, copy=False) @property def dtype(self) -> PandasArrayExtensionDtype: return self._dtype @property def nbytes(self) -> int: return self._data.nbytes def isna(self) -> np.ndarray: if np.issubdtype(self.dtype.value_type, np.floating): return np.array(np.isnan(arr).any() for arr in self._data) return np.array((arr < 0).any() for arr in self._data) def __setitem__(self, key: Union[int, slice, np.ndarray], value: Any) -> None: raise NotImplementedError() def __getitem__(self, item: Union[int, slice, np.ndarray]) -> Union[np.ndarray, "PandasArrayExtensionArray"]: if isinstance(item, int): return self._data[item] return PandasArrayExtensionArray(self._data[item], copy=False) def take( self, indices: Sequence[int], allow_fill: bool = False, fill_value: bool = None ) -> "PandasArrayExtensionArray": indices = np.asarray(indices, dtype="int") if allow_fill: fill_value = ( self.dtype.na_value if fill_value is None else np.asarray(fill_value, dtype=self.dtype.value_type) ) mask = indices == -1 if (indices < -1).any(): raise ValueError("Invalid value in `indices`, must be all >= -1 for `allow_fill` is True") elif len(self) > 0: pass elif not np.all(mask): raise IndexError("Invalid take for empty PandasArrayExtensionArray, must be all -1.") else: data = np.array([fill_value] * len(indices), dtype=self.dtype.value_type) return PandasArrayExtensionArray(data, copy=False) took = self._data.take(indices, axis=0) if allow_fill and mask.any(): took[mask] = [fill_value] * np.sum(mask) return PandasArrayExtensionArray(took, copy=False) def __len__(self) -> int: return len(self._data) def __eq__(self, other) -> np.ndarray: if not isinstance(other, PandasArrayExtensionArray): raise NotImplementedError("Invalid type to compare to: {}".format(type(other))) return (self._data == other._data).all() def pandas_types_mapper(dtype): if isinstance(dtype, _ArrayXDExtensionType): return PandasArrayExtensionDtype(dtype.value_type)
[docs]@dataclass class ClassLabel: """Handle integer class labels. Here for compatiblity with tfds. There are 3 ways to define a ClassLabel, which correspond to the 3 arguments: * `num_classes`: create 0 to (num_classes-1) labels * `names`: a list of label strings * `names_file`: a file containing the list of labels. Note: On python2, the strings are encoded as utf-8. Args: num_classes: `int`, number of classes. All labels must be < num_classes. names: `list<str>`, string names for the integer classes. The order in which the names are provided is kept. names_file: `str`, path to a file with names for the integer classes, one per line. """ num_classes: int = None names: List[str] = None names_file: str = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "int64" pa_type: ClassVar[Any] = pa.int64() _str2int: ClassVar[Dict[str, int]] = None _int2str: ClassVar[Dict[int, int]] = None _type: str = field(default="ClassLabel", init=False, repr=False) def __post_init__(self): # The label is explicitly set as undefined (no label defined) if not sum(bool(a) for a in (self.num_classes, self.names, self.names_file)): return # if sum(bool(a) for a in (self.num_classes, self.names, self.names_file)) != 1: # raise ValueError("Only a single argument of ClassLabel() should be provided.") if self.num_classes is None: if self.names is None: self.names = self._load_names_from_file(self.names_file) else: if self.names is None: self.names = [str(i) for i in range(self.num_classes)] elif len(self.names) != self.num_classes: raise ValueError( "ClassLabel number of names do not match the defined num_classes. " "Got {} names VS {} num_classes".format(len(self.names), self.num_classes) ) # Prepare mappings self._int2str = [str(name) for name in self.names] self._str2int = {name: i for i, name in enumerate(self._int2str)} if len(self._int2str) != len(self._str2int): raise ValueError("Some label names are duplicated. Each label name should be unique.") # If num_classes has been defined, ensure that num_classes and names match num_classes = len(self._str2int) if self.num_classes is None: self.num_classes = num_classes elif self.num_classes != num_classes: raise ValueError( "ClassLabel number of names do not match the defined num_classes. " "Got {} names VS {} num_classes".format(num_classes, self.num_classes) ) def __call__(self): return self.pa_type
[docs] def str2int(self, values: Union[str, Iterable]): """Conversion class name string => integer.""" assert isinstance(values, str) or isinstance(values, Iterable), ( f"Values {values} should be a string " f"or an Iterable (list, numpy array, pytorch, tensorflow tensors" ) return_list = True if isinstance(values, str): values = [values] return_list = False output = [] for value in values: if self._str2int: # strip key if not in dict if value not in self._str2int: value = value.strip() output.append(self._str2int[str(value)]) else: # No names provided, try to integerize failed_parse = False try: output.append(int(value)) except ValueError: failed_parse = True if failed_parse or not 0 <= value < self.num_classes: raise ValueError("Invalid string class label %s" % value) return output if return_list else output[0]
[docs] def int2str(self, values: Union[int, Iterable]): """Conversion integer => class name string.""" assert isinstance(values, int) or isinstance(values, Iterable), ( f"Values {values} should be an integer " f"or an Iterable (list, numpy array, pytorch, tensorflow tensors" ) return_list = True if isinstance(values, int): values = [values] return_list = False if any(not 0 <= v < self.num_classes for v in values): raise ValueError("Invalid integer class label %d" % values) if self._int2str: output = [self._int2str[int(v)] for v in values] else: # No names provided, return str(values) output = [str(v) for v in values] return output if return_list else output[0]
def encode_example(self, example_data): if self.num_classes is None: raise ValueError( "Trying to use ClassLabel feature with undefined number of class. " "Please set ClassLabel.names or num_classes." ) # If a string is given, convert to associated integer if isinstance(example_data, str): example_data = self.str2int(example_data) # Allowing -1 to mean no label. if not -1 <= example_data < self.num_classes: raise ValueError( "Class label %d greater than configured num_classes %d" % (example_data, self.num_classes) ) return example_data @staticmethod def _load_names_from_file(names_filepath): with open(names_filepath, "r", encoding="utf-8") as f: return [name.strip() for name in f.read().split("\n") if name.strip()] # Filter empty names
[docs]@dataclass class Translation: """`FeatureConnector` for translations with fixed languages per example. Here for compatiblity with tfds. Input: The Translate feature accepts a dictionary for each example mapping string language codes to string translations. Output: A dictionary mapping string language codes to translations as `Text` features. Example:: # At construction time: datasets.features.Translation(languages=['en', 'fr', 'de']) # During data generation: yield { 'en': 'the cat', 'fr': 'le chat', 'de': 'die katze' } """ languages: List[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)})
[docs]@dataclass class TranslationVariableLanguages: """`FeatureConnector` for translations with variable languages per example. Here for compatiblity with tfds. Input: The TranslationVariableLanguages feature accepts a dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Output: language: variable-length 1D tf.Tensor of tf.string language codes, sorted in ascending order. translation: variable-length 1D tf.Tensor of tf.string plain text translations, sorted to align with language codes. Example:: # At construction time: datasets.features.Translation(languages=['en', 'fr', 'de']) # During data generation: yield { 'en': 'the cat', 'fr': ['le chat', 'la chatte,'] 'de': 'die katze' } # Tensor returned : { 'language': ['en', 'de', 'fr', 'fr'], 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], } """ languages: List = None num_languages: int = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = list(sorted(list(set(self.languages)))) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if self.languages and set(translation_dict) - lang_set: raise ValueError( "Some languages in example ({0}) are not in valid set ({1}).".format( ", ".join(sorted(set(translation_dict) - lang_set)), ", ".join(lang_set) ) ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations}
[docs]@dataclass class Sequence: """Construct a list of feature from a single type or a dict of types. Mostly here for compatiblity with tfds. """ feature: Any length: int = -1 id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "list" pa_type: ClassVar[Any] = None _type: str = field(default="Sequence", init=False, repr=False)
FeatureType = Union[ dict, list, tuple, Value, ClassLabel, Translation, TranslationVariableLanguages, Sequence, Array2D, Array3D, Array4D, Array5D, ] def get_nested_type(schema: FeatureType) -> pa.DataType: """ Convert our Feature nested object in an Apache Arrow type """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): return pa.struct( {key: get_nested_type(schema[key]) for key in sorted(schema)} ) # sort to make the type deterministic elif isinstance(schema, (list, tuple)): assert len(schema) == 1, "We defining list feature, you should just provide one example of the inner type" value_type = get_nested_type(schema[0]) return pa.list_(value_type) elif isinstance(schema, Sequence): value_type = get_nested_type(schema.feature) # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(value_type, pa.StructType): return pa.struct(dict(sorted((f.name, pa.list_(f.type, schema.length)) for f in value_type))) return pa.list_(value_type, schema.length) # Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods) return schema() def encode_nested_example(schema, obj): """Encode a nested example. This is used since some features (in particular ClassLabel) have some logic during encoding. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): return dict( (k, encode_nested_example(sub_schema, sub_obj)) for k, (sub_schema, sub_obj) in utils.zip_dict(schema, obj) ) elif isinstance(schema, (list, tuple)): sub_schema = schema[0] return [encode_nested_example(sub_schema, o) for o in obj] elif isinstance(schema, Sequence): # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): # dict of list to fill list_dict = {} if isinstance(obj, (list, tuple)): # obj is a list of dict for k, dict_tuples in utils.zip_dict(schema.feature, *obj): list_dict[k] = [encode_nested_example(dict_tuples[0], o) for o in dict_tuples[1:]] return list_dict else: # obj is a single dict for k, (sub_schema, sub_objs) in utils.zip_dict(schema.feature, obj): list_dict[k] = [encode_nested_example(sub_schema, o) for o in sub_objs] return list_dict # schema.feature is not a dict if isinstance(obj, str): # don't interpret a string as a list raise ValueError("Got a string but expected a list instead: '{}'".format(obj)) return [encode_nested_example(schema.feature, o) for o in obj] # Object with special encoding: # ClassLabel will convert from string to int, TranslationVariableLanguages does some checks elif isinstance(schema, (ClassLabel, TranslationVariableLanguages, Value, _ArrayXD)): return schema.encode_example(obj) # Other object should be directly convertible to a native Arrow type (like Translation and Translation) return obj def generate_from_dict(obj: Any): """Regenerate the nested feature object from a serialized dict. We use the '_type' fields to get the dataclass name to load. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(obj, list): return [generate_from_dict(value) for value in obj] # Otherwise we have a dict or a dataclass if "_type" not in obj: return {key: generate_from_dict(value) for key, value in obj.items()} class_type = globals()[obj.pop("_type")] if class_type == Sequence: return Sequence(feature=generate_from_dict(obj["feature"]), length=obj["length"]) field_names = set(f.name for f in fields(class_type)) return class_type(**{k: v for k, v in obj.items() if k in field_names}) def generate_from_arrow_type(pa_type: pa.DataType): if isinstance(pa_type, pa.StructType): return {field.name: generate_from_arrow_type(field.type) for field in pa_type} elif isinstance(pa_type, pa.FixedSizeListType): return Sequence(feature=generate_from_arrow_type(pa_type.value_type), length=pa_type.list_size) elif isinstance(pa_type, pa.ListType): feature = generate_from_arrow_type(pa_type.value_type) if isinstance(feature, (dict, tuple, list)): return [feature] return Sequence(feature=feature) elif isinstance(pa_type, _ArrayXDExtensionType): array_feature = [None, None, Array2D, Array3D, Array4D, Array5D][pa_type.ndims] return array_feature(shape=pa_type.shape, dtype=pa_type.value_type) elif isinstance(pa_type, pa.DictionaryType): raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table elif isinstance(pa_type, pa.DataType): return Value(dtype=str(pa_type)) else: raise ValueError(f"Cannot convert {pa_type} to a Feature type.")
[docs]class Features(dict): @property def type(self): return get_nested_type(self) @classmethod def from_arrow_schema(cls, pa_schema: pa.Schema) -> "Features": obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} return cls(**obj) @classmethod def from_dict(cls, dic) -> "Features": obj = generate_from_dict(dic) return cls(**obj) def encode_example(self, example): example = cast_to_python_objects(example) return encode_nested_example(self, example) def encode_batch(self, batch): encoded_batch = {} if set(batch) != set(self): raise ValueError("Column mismatch between batch {} and features {}".format(set(batch), set(self))) for key, column in batch.items(): column = cast_to_python_objects(column) encoded_batch[key] = [encode_nested_example(self[key], obj) for obj in column] return encoded_batch
[docs] def copy(self): return Features(super().copy())