Source code for datasets.arrow_dataset

# coding=utf-8
# Copyright 2020 The HuggingFace Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
""" Simple Dataset wrapping an Arrow Table."""

import contextlib
import json
import os
import pickle
import shutil
import tempfile
from collections import defaultdict
from collections.abc import Iterable, Mapping
from dataclasses import asdict
from functools import partial, wraps
from math import ceil, floor
from multiprocessing import Pool, RLock
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import pandas as pd
import pyarrow as pa
from tqdm.auto import tqdm

from .arrow_reader import ArrowReader
from .arrow_writer import ArrowWriter, TypedSequence
from .features import Features, Value, cast_to_python_objects, pandas_types_mapper
from .fingerprint import fingerprint, generate_fingerprint, update_fingerprint
from .info import DatasetInfo
from .search import IndexableMixin
from .splits import NamedSplit
from .utils import map_nested
from .utils.logging import INFO, WARNING, get_logger, get_verbosity, set_verbosity_warning


if TYPE_CHECKING:
    from .dataset_dict import DatasetDict

logger = get_logger(__name__)

if int(pa.__version__.split(".")[0]) == 0:
    PYARROW_V0 = True
else:
    PYARROW_V0 = False


class DatasetInfoMixin(object):
    """This base class exposes some attributes of DatasetInfo
    at the base level of the Dataset for easy access.
    """

    def __init__(self, info: DatasetInfo, split: Optional[NamedSplit]):
        self._info = info
        self._split = split

    @property
    def info(self):
        """ :class:`datasets.DatasetInfo` object containing all the metadata in the dataset."""
        return self._info

    @property
    def split(self):
        """ :class:`datasets.DatasetInfo` object containing all the metadata in the dataset."""
        return self._split

    @property
    def builder_name(self) -> str:
        return self._info.builder_name

    @property
    def citation(self) -> str:
        return self._info.citation

    @property
    def config_name(self) -> str:
        return self._info.config_name

    @property
    def dataset_size(self) -> Optional[int]:
        return self._info.dataset_size

    @property
    def description(self) -> str:
        return self._info.description

    @property
    def download_checksums(self) -> Optional[dict]:
        return self._info.download_checksums

    @property
    def download_size(self) -> Optional[int]:
        return self._info.download_size

    @property
    def features(self) -> Features:
        return self._info.features

    @property
    def homepage(self) -> Optional[str]:
        return self._info.homepage

    @property
    def license(self) -> Optional[str]:
        return self._info.license

    @property
    def size_in_bytes(self) -> Optional[int]:
        return self._info.size_in_bytes

    @property
    def supervised_keys(self):
        return self._info.supervised_keys

    @property
    def version(self):
        return self._info.version


class DatasetTransformationNotAllowedError(Exception):
    pass


def transmit_format(func):
    """Wrapper for dataset transforms that are not in-place to transmit the format of the original dataset to the new dataset"""

    @wraps(func)
    def wrapper(*args, **kwargs):
        if args:
            self: "Dataset" = args[0]
            args = args[1:]
        else:
            self: "Dataset" = kwargs.pop("self")
        # don't use self.format since it returns a list of columns for 'columns' even if self_format_columns is None
        new_format = {
            "type": self._format_type,
            "format_kwargs": self._format_kwargs,
            "columns": self._format_columns,
            "output_all_columns": self._output_all_columns,
        }
        out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
        if new_format["columns"] is not None:
            new_format["columns"] = list(set(new_format["columns"]) & set(out.column_names))
        datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
        for dataset in datasets:
            out_format = {
                "type": dataset._format_type,
                "format_kwargs": dataset._format_kwargs,
                "columns": dataset._format_columns,
                "output_all_columns": dataset._output_all_columns,
            }
            if out_format != new_format:
                dataset.set_format(**new_format)
        return out

    wrapper._decorator_name_ = "transmit_format"
    return wrapper


[docs]class Dataset(DatasetInfoMixin, IndexableMixin): """A Dataset backed by an Arrow table or Record Batch.""" def __init__( self, arrow_table: pa.Table, data_files: Optional[List[dict]] = None, info: Optional[DatasetInfo] = None, split: Optional[NamedSplit] = None, indices_table: Optional[pa.Table] = None, indices_data_files: Optional[List[dict]] = None, fingerprint: Optional[str] = None, inplace_history: Optional[List[dict]] = None, ): info = info.copy() if info is not None else DatasetInfo() DatasetInfoMixin.__init__(self, info=info, split=split) IndexableMixin.__init__(self) self._data: pa.Table = arrow_table self._indices: Optional[pa.Table] = indices_table self._data_files: List[dict] = data_files if data_files is not None else [] self._indices_data_files: List[dict] = indices_data_files if indices_data_files is not None else [] self._inplace_history: List[dict] = ( inplace_history if inplace_history is not None else [{"transforms": []} for _ in range(len(self._data_files))] ) self._format_type: Optional[str] = None self._format_kwargs: dict = {} self._format_columns: Optional[list] = None self._output_all_columns: bool = False self._fingerprint: str = fingerprint # Read metadata if self._data.schema.metadata is not None and "huggingface".encode("utf-8") in self._data.schema.metadata: metadata = json.loads(self._data.schema.metadata["huggingface".encode("utf-8")].decode()) if "info" in metadata and self.info.features is None: # try to load features from the arrow file metadata self._info.features = DatasetInfo.from_dict(metadata["info"]).features if ( "fingerprint" in metadata and self._fingerprint is None ): # try to load fingerprint from the arrow file metadata self._fingerprint = metadata["fingerprint"] # Infer features if None inferred_features = Features.from_arrow_schema(arrow_table.schema) if self.info.features is None: self.info.features = inferred_features # Infer fingerprint if None if self._fingerprint is None: self._fingerprint = generate_fingerprint(self) # Sanity checks assert self.features is not None, "Features can't be None in a Dataset object" assert self._fingerprint is not None, "Fingerprint can't be None in a Dataset object" if self.info.features.type != inferred_features.type: raise ValueError( "External features info don't match the dataset:\nGot\n{}\nwith type\n{}\n\nbut expected something like\n{}\nwith type\n{}".format( self.info.features, self.info.features.type, inferred_features, inferred_features.type ) ) if self._indices is not None: assert pa.types.is_unsigned_integer( self._indices.column(0)[0].type ), f"indices must be an Arrow table of unsigned integers, current type is {self._indices.column(0)[0].type}"
[docs] @classmethod def from_file( cls, filename: str, info: Optional[DatasetInfo] = None, split: Optional[NamedSplit] = None, indices_filename: Optional[str] = None, ) -> "Dataset": """ Instantiate a Dataset backed by an Arrow table at filename """ mmap = pa.memory_map(filename) f = pa.ipc.open_stream(mmap) pa_table = f.read_all() data_files = [{"filename": filename}] if indices_filename is not None: indices_mmap = pa.memory_map(indices_filename) indices_f = pa.ipc.open_stream(indices_mmap) indices_pa_table = indices_f.read_all() indices_data_files = [{"filename": indices_filename}] else: indices_pa_table = None indices_data_files = None return cls( arrow_table=pa_table, data_files=data_files, info=info, split=split, indices_table=indices_pa_table, indices_data_files=indices_data_files, )
[docs] @classmethod def from_buffer( cls, buffer: pa.Buffer, info: Optional[DatasetInfo] = None, split: Optional[NamedSplit] = None, indices_buffer: Optional[pa.Buffer] = None, ) -> "Dataset": """ Instantiate a Dataset backed by an Arrow buffer """ mmap = pa.BufferReader(buffer) f = pa.ipc.open_stream(mmap) pa_table = f.read_all() if indices_buffer is not None: indices_mmap = pa.BufferReader(indices_buffer) indices_f = pa.ipc.open_stream(indices_mmap) indices_pa_table = indices_f.read_all() else: indices_pa_table = None return cls(pa_table, info=info, split=split, indices_table=indices_pa_table)
[docs] @classmethod def from_pandas( cls, df: pd.DataFrame, features: Optional[Features] = None, info: Optional[DatasetInfo] = None, split: Optional[NamedSplit] = None, ) -> "Dataset": """ Convert :obj:``pandas.DataFrame`` to a "obj"``pyarrow.Table`` to create a :obj:``datasets.Dataset``. The column types in the resulting Arrow Table are inferred from the dtypes of the pandas.Series in the DataFrame. In the case of non-object Series, the NumPy dtype is translated to its Arrow equivalent. In the case of `object`, we need to guess the datatype by looking at the Python objects in this Series. Be aware that Series of the `object` dtype don't carry enough information to always lead to a meaningful Arrow type. In the case that we cannot infer a type, e.g. because the DataFrame is of length 0 or the Series only contains None/nan objects, the type is set to null. This behavior can be avoided by constructing explicit features and passing it to this function. Args: df (:obj:``pandas.DataFrame``): the dataframe that contains the dataset. features (:obj:``datasets.Features``, `optional`, defaults to :obj:``None``): If specified, the features types of the dataset info (:obj:``datasets.DatasetInfo``, `optional`, defaults to :obj:``None``): If specified, the dataset info containing info like description, citation, etc. split (:obj:``datasets.NamedSplit``, `optional`, defaults to :obj:``None``): If specified, the name of the dataset split. """ if info is not None and features is not None and info.features != features: raise ValueError( "Features specified in `features` and `info.features` can't be different:\n{}\n{}".format( features, info.features ) ) features = features if features is not None else info.features if info is not None else None if info is None: info = DatasetInfo() info.features = features pa_table: pa.Table = pa.Table.from_pandas( df=df, schema=pa.schema(features.type) if features is not None else None ) return cls(pa_table, info=info, split=split)
[docs] @classmethod def from_dict( cls, mapping: dict, features: Optional[Features] = None, info: Optional[Any] = None, split: Optional[Any] = None, ) -> "Dataset": """ Convert :obj:``dict`` to a "obj"``pyarrow.Table`` to create a :obj:``datasets.Dataset``. Args: mapping (:obj:``mapping``): A mapping of strings to Arrays or Python lists. features (:obj:``datasets.Features``, `optional`, defaults to :obj:``None``): If specified, the features types of the dataset info (:obj:``datasets.DatasetInfo``, `optional`, defaults to :obj:``None``): If specified, the dataset info containing info like description, citation, etc. split (:obj:``datasets.NamedSplit``, `optional`, defaults to :obj:``None``): If specified, the name of the dataset split. """ if info is not None and features is not None and info.features != features: raise ValueError( "Features specified in `features` and `info.features` can't be different:\n{}\n{}".format( features, info.features ) ) features = features if features is not None else info.features if info is not None else None if info is None: info = DatasetInfo() info.features = features if features is not None: mapping = features.encode_batch(mapping) else: mapping = cast_to_python_objects(mapping) mapping = { col: TypedSequence(data, type=features.type[col].type if features is not None else None) for col, data in mapping.items() } pa_table: pa.Table = pa.Table.from_pydict(mapping=mapping) return cls(pa_table, info=info, split=split)
def __getstate__(self): state = dict(self.__dict__) state["_info"] = json.dumps(asdict(state["_info"])) state["_split"] = str(state["_split"]) if state["_split"] is not None else None if self._data_files: state["_data"] = None if self._indices_data_files: state["_indices"] = None return state def __setstate__(self, state): assert ( state.get("_data") is not None or state.get("_data_files") is not None ), "tried to unpickle a dataset without arrow_table or data_files" state = dict(state) state["_info"] = DatasetInfo.from_dict(json.loads(state["_info"])) state["_split"] = NamedSplit(state["_split"]) if state["_split"] is not None else None self.__dict__ = state reader = ArrowReader("", self.info) # Read arrow tables if self._data is None and self._data_files: tables = [] for data_file, inplace_hist_per_file in zip(self._data_files, self._inplace_history): # Replay in-place history of transforms (cast_, rename_column_, etc.) pa_table = reader._read_files([data_file]) sub_dataset = Dataset(pa_table, fingerprint="") for inplace_transform_name, args, kwargs in inplace_hist_per_file["transforms"]: getattr(sub_dataset, inplace_transform_name)(*args, **kwargs) tables.append(sub_dataset._data) tables = [t for t in tables if len(t) > 0] # fix all-empty tables tables = tables or [pa.Table.from_batches([], schema=pa.schema(self.info.features.type))] self._data = pa.concat_tables(tables) reader = ArrowReader("", DatasetInfo(features=Features({"indices": Value("int64")}))) if self._indices is None and self._indices_data_files: self._indices = reader._read_files(self._indices_data_files)
[docs] def save_to_disk(self, dataset_path: str): """ Save the dataset in a dataset directory Args: dataset_path (``str``): path of the dataset directory where the dataset will be saved to """ assert ( not self.list_indexes() ), "please remove all the indexes using `dataset.drop_index` before saving a dataset" self = pickle.loads(pickle.dumps(self)) os.makedirs(dataset_path, exist_ok=True) # Write indices if needed if self._indices is not None: if not self._indices_data_files: cache_file_name = os.path.join(dataset_path, "indices.arrow") writer = ArrowWriter(path=cache_file_name) writer.write_table(self._indices) writer.finalize() self._indices_data_files = [{"filename": cache_file_name}] # Write dataset if needed if not self._data_files or any(len(h["transforms"]) > 0 for h in self._inplace_history): cache_file_name = os.path.join(dataset_path, "dataset.arrow") writer = ArrowWriter(path=cache_file_name) writer.write_table(self._data) writer.finalize() self._data_files = [{"filename": cache_file_name}] self._inplace_history = [{"transforms": []}] # Copy all files into the dataset directory for data_file in self._data_files + self._indices_data_files: # Copy file to destination directory src = data_file["filename"] filename = src.split("/")[-1] dest = os.path.join(dataset_path, filename) if src != dest: shutil.copy(src, dest) # Change path to relative path from inside the destination directory data_file["filename"] = filename # Get state state = self.__getstate__() dataset_info = json.loads(state.pop("_info")) assert state.get("_data") is None, "arrow table needs to be memory mapped" assert state.get("_indices") is None, "arrow table needs to be memory mapped" assert all( len(h["transforms"]) == 0 for h in state.get("_inplace_history", []) ), "in-place history needs to be empty" # Serialize state with open(os.path.join(dataset_path, "state.json"), "w") as state_file: json.dump(state, state_file, indent=2, sort_keys=True) with open(os.path.join(dataset_path, "dataset_info.json"), "w") as dataset_info_file: json.dump(dataset_info, dataset_info_file, indent=2, sort_keys=True) logger.info("Dataset saved in {}".format(dataset_path))
[docs] @staticmethod def load_from_disk(dataset_path: str) -> "Dataset": """Load the dataset from a dataset directory Args: dataset_path (``str``): path of the dataset directory where the dataset will be loaded from """ with open(os.path.join(dataset_path, "state.json"), "r") as state_file: state = json.load(state_file) with open(os.path.join(dataset_path, "dataset_info.json"), "r") as dataset_info_file: dataset_info = json.load(dataset_info_file) state["_info"] = json.dumps(dataset_info) dataset = Dataset.from_dict({}) state = {k: state[k] for k in dataset.__dict__.keys()} # in case we add new fields # Change path to absolute path for data_file in state.get("_data_files", []) + state.get("_indices_data_files", []): data_file["filename"] = os.path.join(dataset_path, data_file["filename"]) dataset.__setstate__(state) return dataset
@property def data(self) -> pa.Table: """The Apache Arrow table backing the dataset.""" return self._data @property def cache_files(self): """The cache file containing the Apache Arrow table backing the dataset.""" return self._data_files @property def num_columns(self) -> int: """Number of columns in the dataset.""" return self._data.num_columns @property def num_rows(self) -> int: """Number of rows in the dataset (same as :func:`datasets.Dataset.__len__`).""" if self._indices is not None: return self._indices.num_rows return self._data.num_rows @property def column_names(self) -> List[str]: """Names of the columns in the dataset. """ return self._data.column_names @property def shape(self) -> Tuple[int]: """Shape of the dataset (number of columns, number of rows).""" if self._indices is not None: return tuple(self._indices.num_rows, self._data.num_columns) return self._data.shape
[docs] def unique(self, column: str) -> List[Any]: """Return a list of the unique elements in a column. This is implemented in the low-level backend and as such, very fast. Args: column (:obj:`str`): column name (list all the column names with :func:`datasets.Dataset.column_names`) Returns: :obj:`list` of unique elements in the given column. """ if column not in self._data.column_names: raise ValueError(f"Column ({column}) not in table columns ({self._data.column_names}).") if self._indices is not None and self._indices.num_rows != self._data.num_rows: raise ValueError( f"This dataset is a shallow copy using an indices mapping of another Datset {self._data.num_rows}." f"The `Dataset.unique()` method is currently not handled on shallow copy. Please use `Dataset.flatten_indices()` " f"to create a deep copy of the dataset and be able to use `Dataset.unique()`." ) return self._data.column(column).unique().to_pylist()
@fingerprint(inplace=True) def dictionary_encode_column_(self, column: str): """Dictionary encode a column. Dictionary encode can reduce the size of a column with many repetitions (e.g. string labels columns) by storing a dictionary of the strings. This only affect the internal storage. Args: column (:obj:`str`): """ if column not in self._data.column_names: raise ValueError(f"Column ({column}) not in table columns ({self._data.column_names}).") casted_schema: pa.Schema = self._data.schema field_index = casted_schema.get_field_index(column) field: pa.Field = casted_schema.field(field_index) casted_field = pa.field(field.name, pa.dictionary(pa.int32(), field.type), nullable=False) casted_schema.set(field_index, casted_field) self._data = self._data.cast(casted_schema) self.info.features = Features.from_arrow_schema(self._data.schema)
[docs] @fingerprint(inplace=True) def flatten_(self, max_depth=16): """Flatten the Table. Each column with a struct type is flattened into one column per struct field. Other columns are left unchanged. """ for depth in range(1, max_depth): if any(isinstance(field.type, pa.StructType) for field in self._data.schema): self._data = self._data.flatten() else: break if self.info is not None: self.info.features = Features.from_arrow_schema(self._data.schema) logger.info( "Flattened dataset from depth {} to depth {}.".format(depth, 1 if depth + 1 < max_depth else "unknown") )
[docs] @fingerprint(inplace=True) def cast_(self, features: Features): """ Cast the dataset to a new set of features. You can also remove a column using :func:`Dataset.map` with `feature` but :func:`cast_` is in-place (doesn't copy the data to a new dataset) and is thus faster. Args: features (:class:`datasets.Features`): New features to cast the dataset to. The name and order of the fields in the features must match the current column names. The type of the data must also be convertible from one type to the other. For non-trivial conversion, e.g. string <-> ClassLabel you should use :func:`map` to update the Dataset. """ if list(features) != self._data.column_names: raise ValueError( f"The columns in features ({list(features)}) must be identical and in the same order " f"as the columns in the dataset: {self._data.column_names}" ) self._info.features = features schema = pa.schema(features.type) self._data = self._data.cast(schema)
[docs] @fingerprint(inplace=True) def remove_columns_(self, column_names: Union[str, List[str]]): """ Remove one or several column(s) in the dataset and the features associated to them. You can also remove a column using :func:`Dataset.map` with `remove_columns` but the present method is in-place (doesn't copy the data to a new dataset) and is thus faster. Args: column_names (:obj:`Union[str, List[str]]`): Name of the column(s) to remove. """ if isinstance(column_names, str): column_names = [column_names] for column_name in column_names: if column_name not in self._data.column_names: raise ValueError( f"Column name {column_name} not in the dataset. " f"Current columns in the dataset: {self._data.column_names}" ) for column_name in column_names: del self._info.features[column_name] self._data = self._data.drop(column_names)
[docs] @fingerprint(inplace=True) def rename_column_(self, original_column_name: str, new_column_name: str): """ Rename a column in the dataset and move the features associated to the original column under the new column name. You can also rename a column using :func:`Dataset.map` with `remove_columns` but the present method: - takes care of moving the original features under the new column name. - doesn't copy the data to a new dataset and is thus much faster. Args: original_column_name (:obj:`str`): Name of the column to rename. new_column_name (:obj:`str`): New name for the column. """ if original_column_name not in self._data.column_names: raise ValueError( f"Original column name {original_column_name} not in the dataset. " f"Current columns in the dataset: {self._data.column_names}" ) if new_column_name in self._data.column_names: raise ValueError( f"New column name {original_column_name} already in the dataset. " f"Please choose a column name which is not already in the dataset. " f"Current columns in the dataset: {self._data.column_names}" ) if not new_column_name: raise ValueError("New column name is empty.") new_column_names = [new_column_name if col == original_column_name else col for col in self._data.column_names] self._info.features[new_column_name] = self._info.features[original_column_name] del self._info.features[original_column_name] self._data = self._data.rename_columns(new_column_names)
[docs] def __len__(self): """ Number of rows in the dataset """ return self.num_rows
[docs] def __iter__(self): """Iterate through the examples. If a formatting is set with :func:`datasets.Dataset.set_format` rows will be returned with the selected format. """ format_type = self._format_type format_kwargs = self._format_kwargs format_columns = self._format_columns output_all_columns = self._output_all_columns for index in range(self.num_rows): yield self._getitem( index, format_type=format_type, format_columns=format_columns, output_all_columns=output_all_columns, format_kwargs=format_kwargs, )
def __repr__(self): return f"Dataset(features: {self.features}, num_rows: {self.num_rows})" @property def format(self): return { "type": self._format_type, "format_kwargs": self._format_kwargs, "columns": self.column_names if self._format_columns is None else self._format_columns, "output_all_columns": self._output_all_columns, }
[docs] @contextlib.contextmanager def formatted_as( self, type: Optional[str] = None, columns: Optional[List] = None, output_all_columns: bool = False, **format_kwargs, ): """To be used in a `with` statement. Set __getitem__ return format (type and columns) Args: type (Optional ``str``): output type selected in [None, 'numpy', 'torch', 'tensorflow', 'pandas'] None means __getitem__ returns python objects (default) columns (Optional ``List[str]``): columns to format in the output None means __getitem__ returns all columns (default) output_all_columns (``bool`` default to False): keep un-formatted columns as well in the output (as python objects) format_kwargs: keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`. """ old_format_type = self._format_type old_format_kwargs = self._format_kwargs old_format_columns = self._format_columns old_output_all_columns = self._output_all_columns try: self.set_format(type, columns, output_all_columns, **format_kwargs) yield finally: self.set_format(old_format_type, old_format_columns, old_output_all_columns, **old_format_kwargs)
[docs] @fingerprint(inplace=True) def set_format( self, type: Optional[str] = None, columns: Optional[List] = None, output_all_columns: bool = False, **format_kwargs, ): """Set __getitem__ return format (type and columns) Args: type (Optional ``str``): output type selected in [None, 'numpy', 'torch', 'tensorflow', 'pandas'] None means __getitem__ returns python objects (default) columns (Optional ``List[str]``): columns to format in the output None means __getitem__ returns all columns (default) output_all_columns (``bool`` default to False): keep un-formatted columns as well in the output (as python objects) format_kwargs: keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`. """ # Check return type if type in ["torch", "pytorch", "pt"]: try: import torch # noqa: F401 except ImportError: logger.error("PyTorch needs to be installed to be able to return PyTorch tensors.") type = "torch" elif type in ["tensorflow", "tf"]: try: import tensorflow # noqa: F401 except ImportError: logger.error("Tensorflow needs to be installed to be able to return Tensorflow tensors.") type = "tensorflow" elif type in ["numpy", "np"]: type = "numpy" elif type in ["pandas", "pd"]: type = "pandas" elif type in [None, "python"]: type = None else: assert not ( type == "pandas" and (output_all_columns or format_kwargs) ), "Format type 'pandas' doesn't allow the use of `output_all_columns` or `**format_kwargs`." assert ( type is None or type == "numpy" or type == "pandas" ), "Return type should be None or selected in ['numpy', 'torch', 'tensorflow', 'pandas'], but got '{}'".format( type ) # Check filter column if isinstance(columns, str): columns = [columns] if columns is not None and any(col not in self._data.column_names for col in columns): raise ValueError( "Columns {} not in the dataset. Current columns in the dataset: {}".format( list(filter(lambda col: col not in self._data.column_names, columns)), self._data.column_names ) ) format_kwargs.update(format_kwargs.pop("format_kwargs", {})) # allow to use self.set_format(self.format) self._format_type = type self._format_kwargs = format_kwargs self._format_columns = columns self._output_all_columns = output_all_columns logger.info( "Set __getitem__(key) output type to %s for %s columns " " (when key is int or slice) and %s output other (un-formatted) columns.", "python objects" if type is None else type, "no" if columns is None else str(columns), "do" if output_all_columns else "don't", )
[docs] def reset_format(self): """Reset __getitem__ return format to python objects and all columns. Same as ``self.set_format()`` """ self.set_format()
def _convert_outputs( self, outputs, format_type=None, format_columns=None, output_all_columns=False, format_kwargs=None ): format_kwargs = format_kwargs if format_kwargs is not None else {} if format_type is None: if output_all_columns: return outputs if isinstance(outputs, dict) and format_columns is not None: return {k: v for k, v in outputs.items() if k in format_columns} return outputs map_nested_kwargs = {} if format_type == "numpy": if "copy" not in format_kwargs: format_kwargs["copy"] = False command = partial(np.array, **format_kwargs) map_nested_kwargs["map_list"] = False # convert lists to arrays elif format_type == "torch": import torch map_nested_kwargs["map_list"] = False # convert lists to tensors def command(x): if isinstance( x, (list, tuple, np.ndarray) ): # add support for nested types like struct of list of struct x = np.array(x, copy=False) if x.dtype == np.object: # pytorch tensors cannot be instantied from an array of objects return [map_nested(command, i, **map_nested_kwargs) for i in x] return torch.tensor(x, **format_kwargs) elif format_type == "tensorflow": import tensorflow map_nested_kwargs["map_list"] = False # convert lists to tensors def command(x): if isinstance( x, (list, tuple, np.ndarray) ): # add support for nested types like struct of list of struct x = np.array(x, copy=False) if x.dtype == np.object: # tensorflow tensors can sometimes be instantied from an array of objects try: return tensorflow.ragged.constant(x, **format_kwargs) except ValueError: return [map_nested(command, i, **map_nested_kwargs) for i in x] return tensorflow.ragged.constant(x, **format_kwargs) else: def identity(x): return x command = identity if isinstance(outputs, (list, tuple, np.ndarray, pd.Series)): return command(outputs) elif isinstance(outputs, pd.DataFrame): if format_columns is not None and not output_all_columns: to_remove_columns = [col for col in self.column_names if col not in format_columns] output_dict = outputs.drop(to_remove_columns, axis=1) else: output_dict = outputs else: output_dict = {} for k, v in outputs.items(): if format_columns is not None and k not in format_columns and not output_all_columns: continue if format_columns is None or k in format_columns: v = map_nested(command, v, **map_nested_kwargs) output_dict[k] = v return output_dict @staticmethod def _unnest(py_dict): return dict((key, array[0]) for key, array in py_dict.items()) @staticmethod def _nest(py_dict): return dict((key, [elem]) for key, elem in py_dict.items()) def _map_indices(self, indices: Union[int, slice, pa.Array, Iterable]): if self._indices is None: return indices if isinstance(indices, int): return self._indices.column(0)[indices].as_py() slice_indices = None array_indices = None if isinstance(indices, slice): slice_indices = indices.indices(self.num_rows) # Check if the slice is a contiguous slice - else build an indices array if slice_indices[2] != 1 or slice_indices[1] < slice_indices[0]: array_indices = pa.array(list(range(*slice_indices)), type=pa.uint64()) elif isinstance(indices, pa.Array): array_indices = indices elif isinstance(indices, Iterable): array_indices = pa.array([int(i) for i in indices], type=pa.uint64()) # We can do a slice if array_indices is None: return self._indices.column(0).slice(slice_indices[0], slice_indices[1] - slice_indices[0]) # We cannot do a slice, we need to do a take or some concatenation on pyarrow < 1.0.0 if PYARROW_V0: # pre-1.0.0 backward compatibility data_array = pa.concat_tables(self._indices.slice(i.as_py(), 1) for i in array_indices).column(0) else: data_array = self._indices.column(0).take(array_indices) return data_array def _getitem( self, key: Union[int, slice, str], format_type=None, format_columns=None, output_all_columns=False, format_kwargs=None, ) -> Union[Dict, List]: """ Can be used to index columns (by string names) or rows (by integer index, slices, or iter of indices or bools) """ # In the following, to convert data from the arrow table to dicts or lists, # we use .to_pandas().to_dict() or .to_pandas().to_list() as they are # significantly faster than .to_pydict() thanks to zero-copy and because it doesn't # call `list()` on every object in sequences of sequences of objects for example if isinstance(key, int): if key < 0: key = self.num_rows + key if key >= self.num_rows or key < 0: raise IndexError(f"Index ({key}) outside of table length ({self.num_rows}).") # Check if we need to convert indices key = self._map_indices(key) if format_type is not None: if format_type == "pandas": outputs = self._data.slice(key, 1).to_pandas(types_mapper=pandas_types_mapper) else: outputs = self._unnest( self._data.slice(key, 1).to_pandas(types_mapper=pandas_types_mapper).to_dict("list") ) else: outputs = self._unnest(self._data.slice(key, 1).to_pydict()) elif isinstance(key, slice): indices_array = None key_indices = key.indices(self.num_rows) # Check if the slice is a contiguous slice - else build an indices array if key_indices[2] != 1 or key_indices[1] < key_indices[0]: indices_array = pa.array(list(range(*key)), type=pa.uint64()) # Check if we need to convert indices if self._indices is not None: indices_array = self._map_indices(indices_array if indices_array else key) # TODO: here we could add a check that the resulting indices are a contiguous slice # to avoid using 'take' instead of 'slice' # Get the subset of the table if indices_array is not None: if PYARROW_V0: data_subset = pa.concat_tables( self._data.slice(indices_array[i].as_py(), 1) for i in range(len(indices_array)) ) else: data_subset = self._data.take(indices_array) else: data_subset = self._data.slice(key_indices[0], key_indices[1] - key_indices[0]) # Convert to the format if format_type is not None: if format_type == "pandas": outputs = data_subset.to_pandas(types_mapper=pandas_types_mapper) else: outputs = data_subset.to_pandas(types_mapper=pandas_types_mapper).to_dict("list") else: outputs = data_subset.to_pydict() elif isinstance(key, str): if key not in self._data.column_names: raise ValueError(f"Column ({key}) not in table columns ({self._data.column_names}).") # Check if we need to convert indices if self._indices is not None: indices_array = self._indices.column(0) if PYARROW_V0: data_array = pa.concat_tables(self._data.slice(i.as_py(), 1) for i in indices_array).column(key) else: data_array = self._data.column(key).take(indices_array) else: data_array = self._data.column(key) if format_type is not None: # We should use # outputs = self._data[key].to_pandas(types_mapper=pandas_types_mapper) # but there is a bug in pyarrow that makes ignores the types_mapper in that case # see https://issues.apache.org/jira/browse/ARROW-9664 # We build a table with one column and call to_pandas on it instead one_column_table = pa.Table.from_arrays([data_array], schema=pa.schema([self._data.schema.field(key)])) if format_columns is None or key in format_columns: if format_type == "pandas": outputs = one_column_table.to_pandas(types_mapper=pandas_types_mapper)[key] else: outputs = one_column_table.to_pandas(types_mapper=pandas_types_mapper)[key].to_list() else: outputs = one_column_table.to_pandas(types_mapper=pandas_types_mapper)[key].to_list() else: outputs = data_array.to_pylist() elif isinstance(key, Iterable): if len(key) > 0 and isinstance(key[0], (bool, np.bool_)): if len(key) != self.__len__(): raise ValueError( f"Iterable with bool entries must be length of dataset ({self.__len__()}), " f"not {len(key)}" ) indices = [i for i, val in enumerate(key) if val] else: indices = key indices_array = pa.array([int(i) for i in indices], type=pa.uint64()) # Check if we need to convert indices indices_array = self._map_indices(indices_array) # TODO: here we could add a check that the resulting indices are a contiguous slice # to avoid using 'take' instead of 'slice' if PYARROW_V0: data_subset = pa.concat_tables( self._data.slice(indices_array[i].as_py(), 1) for i in range(len(indices_array)) ) else: data_subset = self._data.take(indices_array) if format_type is not None: if format_type == "pandas": outputs = data_subset.to_pandas(types_mapper=pandas_types_mapper) else: outputs = data_subset.to_pandas(types_mapper=pandas_types_mapper).to_dict("list") else: outputs = data_subset.to_pydict() else: raise ValueError("Can only get row(s) (int or slice or list[int]) or columns (string).") if format_type is not None or format_columns is not None: outputs = self._convert_outputs( outputs, format_type=format_type, format_columns=format_columns, output_all_columns=output_all_columns, format_kwargs=format_kwargs, ) return outputs
[docs] def __getitem__(self, key: Union[int, slice, str]) -> Union[Dict, List]: """ Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools) """ return self._getitem( key, format_type=self._format_type, format_columns=self._format_columns, output_all_columns=self._output_all_columns, format_kwargs=self._format_kwargs, )
[docs] def cleanup_cache_files(self): """Clean up all cache files in the dataset cache directory, excepted the currently used cache file if there is one. Be carefull when running this command that no other process is currently using other cache files. Return: Number of removed files """ if not self._data_files or "filename" not in self._data_files[0]: return None current_cache_files = [os.path.abspath(cache_file["filename"]) for cache_file in self._data_files] cache_directory = os.path.dirname(current_cache_files[0]) logger.info(f"Listing files in {cache_directory}") files: List[str] = os.listdir(cache_directory) files_to_remove = [] for f_name in files: full_name = os.path.abspath(os.path.join(cache_directory, f_name)) if f_name.startswith("cache-") and f_name.endswith(".arrow"): if full_name in current_cache_files: logger.info(f"Keeping currently used cache file at {full_name}") continue files_to_remove.append(full_name) for file_path in files_to_remove: logger.info(f"Removing {file_path}") os.remove(file_path) return len(files_to_remove)
def _get_cache_file_path(self, fingerprint): cache_file_name = "cache-" + fingerprint + ".arrow" cache_directory = os.path.dirname(self._data_files[0]["filename"]) cache_file_path = os.path.join(cache_directory, cache_file_name) return cache_file_path
[docs] def map( self, function: Optional[Callable] = None, with_indices: bool = False, input_columns: Optional[Union[str, List[str]]] = None, batched: bool = False, batch_size: Optional[int] = 1000, drop_last_batch: bool = False, remove_columns: Optional[List[str]] = None, keep_in_memory: bool = False, load_from_cache_file: bool = True, cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, features: Optional[Features] = None, disable_nullable: bool = False, fn_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, suffix_template: str = "_{rank:05d}_of_{num_proc:05d}", new_fingerprint: Optional[str] = None, ) -> "Dataset": """Apply a function to all the elements in the table (individually or in batches) and update the table (if function does updated examples). Args: function (`callable`): with one of the following signature: - `function(example: Union[Dict, Any]) -> Union[Dict, Any]` if `batched=False` and `with_indices=False` - `function(example: Union[Dict, Any], indices: int) -> Union[Dict, Any]` if `batched=False` and `with_indices=True` - `function(batch: Union[Dict[List], List[Any]]) -> Union[Dict, Any]` if `batched=True` and `with_indices=False` - `function(batch: Union[Dict[List], List[Any]], indices: List[int]) -> Union[Dict, Any]` if `batched=True` and `with_indices=True` If no function is provided, default to identity function: lambda x: x with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`. input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): The columns to be passed into `function` as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument. batched (`bool`, defaults to `False`): Provide batch of examples to `function` batch_size (`Optional[int]`, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True` `batch_size <= 0` or `batch_size == None`: Provide the full dataset as a single batch to `function` drop_last_batch (`bool`, default: `False`): Whether a last batch smaller than the batch_size should be dropped instead of being processed by the function. remove_columns (`Optional[List[str]]`, defaults to `None`): Remove a selection of columns while doing the mapping. Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding columns with names in `remove_columns`, these columns will be kept. keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file. load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the current computation from `function` can be identified, use it instead of recomputing. cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the results of the computation instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. features (`Optional[datasets.Features]`, defaults to `None`): Use a specific Features to store the cache file instead of the automatically generated one. disable_nullable (`bool`, defaults to `True`): Disallow null values in the table. fn_kwargs (`Optional[Dict]`, defaults to `None`): Keyword arguments to be passed to `function` num_proc (`Optional[int]`, defaults to `None`): Number of processes for multiprocessing. By default it doesn't use multiprocessing. suffix_template (`str`, defaults to "_{rank:05d}_of_{num_proc:05d}"): If cache_file_name is specified, then this suffix will be added at the end of the base name of each. For example, if cache_file_name is "processed.arrow", then for rank=1 and num_proc=4, the resulting file would be "processed_00001_of_00004.arrow" for the default suffix. new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments """ assert num_proc is None or num_proc > 0, "num_proc must be an integer > 0." # If the array is empty we do nothing if len(self) == 0: return self if function is None: function = lambda x: x # noqa: E731 if isinstance(input_columns, str): input_columns = [input_columns] if input_columns is not None: for input_column in input_columns: if input_column not in self._data.column_names: raise ValueError( "Input column {} not in the dataset. Current columns in the dataset: {}".format( input_column, self._data.column_names ) ) if fn_kwargs is None: fn_kwargs = dict() # Check if the function returns updated examples def does_function_return_dict(inputs, indices): """ Does the function returns a dict. """ fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] processed_inputs = ( function(*fn_args, indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) ) does_return_dict = isinstance(processed_inputs, Mapping) if does_return_dict is False and processed_inputs is not None: raise TypeError( "Provided `function` which is applied to all elements of table returns a variable of type {}. Make sure provided `function` returns a variable of type `dict` to update the dataset or `None` if you are only interested in side effects.".format( type(processed_inputs) ) ) elif isinstance(test_indices, list) and does_return_dict is True: allowed_batch_return_types = (list, np.ndarray) all_dict_values_are_lists = all( isinstance(value, allowed_batch_return_types) for value in processed_inputs.values() ) if all_dict_values_are_lists is False: raise TypeError( "Provided `function` which is applied to all elements of table returns a `dict` of types {}. When using `batched=True`, make sure provided `function` returns a `dict` of types like `{}`.".format( [type(x) for x in processed_inputs.values()], allowed_batch_return_types ) ) return does_return_dict # We only update the data table (and use the cache) if the function returns a dict. # Test it on the first element or a small batch (0, 1) for batched inputs logger.info("Testing the mapped function outputs") test_inputs = self[:2] if batched else self[0] test_indices = [0, 1] if batched else 0 update_data = does_function_return_dict(test_inputs, test_indices) logger.info("Testing finished, running the mapping function on the dataset") if num_proc is None or num_proc == 1: return self._map_single( function=function, with_indices=with_indices, input_columns=input_columns, batched=batched, batch_size=batch_size, drop_last_batch=drop_last_batch, remove_columns=remove_columns, keep_in_memory=keep_in_memory, load_from_cache_file=load_from_cache_file, cache_file_name=cache_file_name, writer_batch_size=writer_batch_size, features=features, disable_nullable=disable_nullable, fn_kwargs=fn_kwargs, new_fingerprint=new_fingerprint, update_data=update_data, ) else: def format_cache_file_name(cache_file_name, rank): sep = cache_file_name.rindex(".") base_name, extension = cache_file_name[:sep], cache_file_name[sep:] cache_file_name = base_name + suffix_template.format(rank=rank, num_proc=num_proc) + extension logger.info("Process #{} will write at {}".format(rank, cache_file_name)) return cache_file_name with Pool(num_proc, initargs=(RLock(),), initializer=tqdm.set_lock) as pool: shards = [ self.shard(num_shards=num_proc, index=rank, contiguous=True, keep_in_memory=keep_in_memory) for rank in range(num_proc) ] kwds_per_shard = [ dict( self=shards[rank], function=function, with_indices=with_indices, input_columns=input_columns, batched=batched, batch_size=batch_size, drop_last_batch=drop_last_batch, remove_columns=remove_columns, keep_in_memory=keep_in_memory, load_from_cache_file=load_from_cache_file, cache_file_name=format_cache_file_name(cache_file_name, rank) if cache_file_name is not None else None, writer_batch_size=writer_batch_size, features=features.copy() if features is not None else None, disable_nullable=disable_nullable, fn_kwargs=fn_kwargs, rank=rank, offset=sum(len(s) for s in shards[:rank]), update_data=update_data, ) for rank in range(num_proc) ] logger.info("Spawning {} processes".format(num_proc)) results = [pool.apply_async(self.__class__._map_single, kwds=kwds) for kwds in kwds_per_shard] transformed_shards = [r.get() for r in results] logger.info("Concatenating {} shards from multiprocessing".format(num_proc)) result = concatenate_datasets(transformed_shards) if new_fingerprint is not None: result._fingerprint = new_fingerprint return result
@transmit_format @fingerprint(inplace=False) def _map_single( self, function: Optional[Callable] = None, with_indices: bool = False, input_columns: Optional[Union[str, List[str]]] = None, batched: bool = False, batch_size: Optional[int] = 1000, drop_last_batch: bool = False, remove_columns: Optional[List[str]] = None, keep_in_memory: bool = False, load_from_cache_file: bool = True, cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, features: Optional[Features] = None, disable_nullable: bool = False, fn_kwargs: Optional[dict] = None, new_fingerprint: Optional[str] = None, rank: Optional[int] = None, offset: int = 0, update_data=True, ) -> "Dataset": """Apply a function to all the elements in the table (individually or in batches) and update the table (if function does updated examples). Args: function (`callable`): with one of the following signature: - `function(example: Union[Dict, Any]) -> Union[Dict, Any]` if `batched=False` and `with_indices=False` - `function(example: Union[Dict, Any], indices: int) -> Union[Dict, Any]` if `batched=False` and `with_indices=True` - `function(batch: Union[Dict[List], List[Any]]) -> Union[Dict, Any]` if `batched=True` and `with_indices=False` - `function(batch: Union[Dict[List], List[Any]], indices: List[int]) -> Union[Dict, Any]` if `batched=True` and `with_indices=True` If no function is provided, default to identity function: lambda x: x with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`. input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): The columns to be passed into `function` as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument. batched (`bool`, defaults to `False`): Provide batch of examples to `function` batch_size (`Optional[int]`, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True` `batch_size <= 0` or `batch_size == None`: Provide the full dataset as a single batch to `function` drop_last_batch (`bool`, default: `False`): Whether a last batch smaller than the batch_size should be dropped instead of being processed by the function. remove_columns (`Optional[List[str]]`, defaults to `None`): Remove a selection of columns while doing the mapping. Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding columns with names in `remove_columns`, these columns will be kept. keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file. load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the current computation from `function` can be identified, use it instead of recomputing. cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the results of the computation instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. features (`Optional[datasets.Features]`, defaults to `None`): Use a specific Features to store the cache file instead of the automatically generated one. disable_nullable (`bool`, defaults to `True`): Disallow null values in the table. fn_kwargs (`Optional[Dict]`, defaults to `None`): Keyword arguments to be passed to `function` new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments rank: (`Optional[int]`, defaults to `None`): If specified, this is the process rank when doing multiprocessing offset: (`int`, defaults to 0): If specified, this is an offset applied to the indices passed to `function` if `with_indices=True` update_data (`bool`, defaults to `True`): If False, no new arrow table will be created """ assert ( not keep_in_memory or cache_file_name is None ), "Please use either `keep_in_memory` or `cache_file_name` but not both." not_verbose = bool(logger.getEffectiveLevel() > INFO) # Reduce logging to keep things readable in multiprocessing with tqdm if rank is not None and get_verbosity() < WARNING: set_verbosity_warning() # Print at least one thing to fix tqdm in notebooks in multiprocessing # see https://github.com/tqdm/tqdm/issues/485#issuecomment-473338308 if rank is not None and "notebook" in tqdm.__name__: print(" ", end="", flush=True) # Select the columns (arrow columns) to process if remove_columns is not None and any(col not in self._data.column_names for col in remove_columns): raise ValueError( "Column to remove {} not in the dataset. Current columns in the dataset: {}".format( list(filter(lambda col: col not in self._data.column_names, remove_columns)), self._data.column_names, ) ) if isinstance(input_columns, str): input_columns = [input_columns] if input_columns is not None: for input_column in input_columns: if input_column not in self._data.column_names: raise ValueError( "Input column {} not in the dataset. Current columns in the dataset: {}".format( input_column, self._data.column_names ) ) if fn_kwargs is None: fn_kwargs = dict() # If we do batch computation but no batch sze is provided, default to the full dataset if batched and (batch_size is None or batch_size <= 0): batch_size = self.num_rows class NumExamplesMismatch(Exception): pass def apply_function_on_filtered_inputs(inputs, indices, check_same_num_examples=False, offset=0): """ Utility to apply the function on a selection of columns. """ fn_args = [inputs] if input_columns is None else [inputs[col] for col in input_columns] if offset == 0: effective_indices = indices else: effective_indices = [i + offset for i in indices] if isinstance(indices, list) else indices + offset processed_inputs = ( function(*fn_args, effective_indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) ) if not update_data: return None # Nothing to update, let's move on if remove_columns is not None: for column in remove_columns: inputs.pop(column) if self._format_type is not None: inputs = self._getitem( key=(indices if isinstance(indices, int) else slice(indices[0], indices[-1] + 1)), format_type=None, format_columns=None, format_kwargs=None, ) if check_same_num_examples: input_num_examples = len(inputs[next(iter(inputs.keys()))]) processed_inputs_num_examples = len(processed_inputs[next(iter(processed_inputs.keys()))]) if input_num_examples != processed_inputs_num_examples: raise NumExamplesMismatch() inputs.update(processed_inputs) return inputs # Check if we've already cached this computation (indexed by a hash) if update_data and self._data_files: if cache_file_name is None: # we create a unique hash from the function, current dataset file and the mapping args cache_file_name = self._get_cache_file_path(new_fingerprint) if os.path.exists(cache_file_name) and load_from_cache_file: logger.warning("Loading cached processed dataset at %s", cache_file_name) info = self.info.copy() info.features = features return Dataset.from_file(cache_file_name, info=info, split=self.split) # Prepare output buffer and batched writer in memory or on file if we update the table if update_data: if features is None: features = self.features update_features = True else: update_features = False if keep_in_memory or cache_file_name is None: buf_writer = pa.BufferOutputStream() tmp_file = None writer = ArrowWriter( features=features, stream=buf_writer, writer_batch_size=writer_batch_size, update_features=update_features, fingerprint=new_fingerprint, ) else: buf_writer = None logger.info("Caching processed dataset at %s", cache_file_name) tmp_file = tempfile.NamedTemporaryFile("wb", dir=os.path.dirname(cache_file_name), delete=False) writer = ArrowWriter( features=features, path=tmp_file.name, writer_batch_size=writer_batch_size, update_features=update_features, fingerprint=new_fingerprint, ) try: # Loop over single examples or batches and write to buffer/file if examples are to be updated pbar_iterable = self if not batched else range(0, len(self), batch_size) pbar_unit = "ex" if not batched else "ba" pbar_desc = "#" + str(rank) if rank is not None else None pbar = tqdm(pbar_iterable, disable=not_verbose, position=rank, unit=pbar_unit, desc=pbar_desc) if not batched: for i, example in enumerate(pbar): example = apply_function_on_filtered_inputs(example, i, offset=offset) if update_data: example = cast_to_python_objects(example) writer.write(example) else: for i in pbar: if drop_last_batch and i + batch_size > self.num_rows: continue batch = self[i : i + batch_size] indices = list(range(*(slice(i, i + batch_size).indices(self.num_rows)))) # Something simpler? try: batch = apply_function_on_filtered_inputs( batch, indices, check_same_num_examples=len(self.list_indexes()) > 0, offset=offset ) except NumExamplesMismatch: raise DatasetTransformationNotAllowedError( "Using `.map` in batched mode on a dataset with attached indexes is allowed only if it doesn't create or remove existing examples. You can first run `.drop_index() to remove your index and then re-add it." ) if update_data: batch = cast_to_python_objects(batch) writer.write_batch(batch) if update_data: writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file except (Exception, KeyboardInterrupt): if update_data and tmp_file is not None: if os.path.exists(tmp_file.name): os.remove(tmp_file.name) raise if update_data and tmp_file is not None: shutil.move(tmp_file.name, cache_file_name) if update_data: # Create new Dataset from buffer or file info = self.info.copy() info.features = writer._features if buf_writer is None: return Dataset.from_file(cache_file_name, info=info, split=self.split) else: return Dataset.from_buffer(buf_writer.getvalue(), info=info, split=self.split) else: return self
[docs] @transmit_format @fingerprint(inplace=False) def filter( self, function: Optional[Callable] = None, with_indices=False, input_columns: Optional[Union[str, List[str]]] = None, batch_size: Optional[int] = 1000, remove_columns: Optional[List[str]] = None, keep_in_memory: bool = False, load_from_cache_file: bool = True, cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, fn_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, suffix_template: str = "_{rank:05d}_of_{num_proc:05d}", new_fingerprint: Optional[str] = None, ) -> "Dataset": """Apply a filter function to all the elements in the table in batches and update the table so that the dataset only includes examples according to the filter function. Args: function (`callable`): with one of the following signature: - `function(example: Union[Dict, Any]) -> bool` if `with_indices=False` - `function(example: Union[Dict, Any], indices: int) -> bool` if `with_indices=True` If no function is provided, default to an always True function: lambda x: True with_indices (`bool`, defaults to `False`): Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`. input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`): The columns to be passed into `function` as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument. batch_size (`Optional[int]`, defaults to `1000`): Number of examples per batch provided to `function` if `batched=True` `batch_size <= 0` or `batch_size == None`: Provide the full dataset as a single batch to `function` remove_columns (`Optional[List[str]]`, defaults to `None`): Remove a selection of columns while doing the mapping. Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding columns with names in `remove_columns`, these columns will be kept. keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file. load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the current computation from `function` can be identified, use it instead of recomputing. cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the results of the computation instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. fn_kwargs (`Optional[Dict]`, defaults to `None`): Keyword arguments to be passed to `function` num_proc (`Optional[int]`, defaults to `None`): Number of processes for multiprocessing. By default it doesn't use multiprocessing. suffix_template (`str`, defaults to "_{rank:05d}_of_{num_proc:05d}"): If cache_file_name is specified, then this suffix will be added at the end of the base name of each. For example, if cache_file_name is "processed.arrow", then for rank=1 and num_proc=4, the resulting file would be "processed_00001_of_00004.arrow" for the default suffix. new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments """ if len(self.list_indexes()) > 0: raise DatasetTransformationNotAllowedError( "Using `.filter` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it.`" ) if function is None: function = lambda x: True # noqa: E731 if isinstance(input_columns, str): input_columns = [input_columns] if input_columns is not None: for input_column in input_columns: if input_column not in self._data.column_names: raise ValueError( "Input column {} not in the dataset. Current columns in the dataset: {}".format( input_column, self._data.column_names ) ) if fn_kwargs is None: fn_kwargs = dict() fn_kwargs["input_columns"] = input_columns # return map function return self.map( partial(map_function, function=function, with_indices=with_indices), batched=True, with_indices=with_indices, features=self.features, batch_size=batch_size, remove_columns=remove_columns, keep_in_memory=keep_in_memory, load_from_cache_file=load_from_cache_file, cache_file_name=cache_file_name, writer_batch_size=writer_batch_size, fn_kwargs=fn_kwargs, num_proc=num_proc, suffix_template=suffix_template, new_fingerprint=new_fingerprint, )
@transmit_format @fingerprint(inplace=False) def flatten_indices( self, keep_in_memory: bool = False, cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, features: Optional[Features] = None, disable_nullable: bool = True, new_fingerprint: Optional[str] = None, ) -> "Dataset": """Create and cache a new Dataset by flattening the indices mapping. Args: keep_in_memory (`bool`, default: `False`): Keep the dataset in memory instead of writing it to a cache file. cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the results of the computation instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. features (`Optional[datasets.Features]`, default: `None`): Use a specific Features to store the cache file instead of the automatically generated one. disable_nullable (`bool`, default: `True`): Allow null values in the table. new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments """ return self.map( batched=True, # for speed keep_in_memory=keep_in_memory, cache_file_name=cache_file_name, writer_batch_size=writer_batch_size, features=features, disable_nullable=disable_nullable, new_fingerprint=new_fingerprint, ) def _new_dataset_with_indices( self, indices_cache_file_name: Optional[str] = None, indices_buffer: Optional[pa.Buffer] = None, fingerprint: Optional[str] = None, ) -> "Dataset": """ Return a new Dataset obtained by adding indices (provided in indices_cache_file_name or in a buffer) to the current Dataset. """ assert ( indices_cache_file_name is not None or indices_buffer is not None ), "At least one of indices_cache_file_name or indices_buffer must be provided." assert fingerprint is not None, "please specify a fingerprint for the dataset with indices" data_files = self._data_files if indices_cache_file_name is not None: indices_mmap = pa.memory_map(indices_cache_file_name) if data_files is None: data_files = [] indices_data_files = [{"filename": indices_cache_file_name}] else: indices_mmap = pa.BufferReader(indices_buffer) indices_data_files = None indices_f = pa.ipc.open_stream(indices_mmap) indices_pa_table = indices_f.read_all() # Return new Dataset object return Dataset( self._data, data_files=data_files, info=self.info, split=self.split, indices_table=indices_pa_table, indices_data_files=indices_data_files, fingerprint=fingerprint, inplace_history=self._inplace_history, # in-place transforms have to be kept as we kept the same data_files )
[docs] @transmit_format @fingerprint(inplace=False) def select( self, indices: Iterable, keep_in_memory: bool = False, indices_cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, new_fingerprint: Optional[str] = None, ) -> "Dataset": """Create a new dataset with rows selected following the list/array of indices. Args: `indices` (sequence, iterable, ndarray or Series): List or 1D-array of integer indices for indexing. `keep_in_memory` (`bool`, default: `False`): Keep the indices mapping in memory instead of writing it to a cache file. `indices_cache_file_name` (`Optional[str]`, default: `None`): Provide the name of a cache file to use to store the indices mapping instead of the automatically generated cache file name. `writer_batch_size` (`int`, default: `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments """ assert ( not keep_in_memory or indices_cache_file_name is None ), "Please use either `keep_in_memory` or `indices_cache_file_name` but not both." if len(self.list_indexes()) > 0: raise DatasetTransformationNotAllowedError( "Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it." ) # If the array is empty we do nothing if len(self) == 0: return self # Prepare the writer for our indices arrow table if keep_in_memory or indices_cache_file_name is None: buf_writer = pa.BufferOutputStream() tmp_file = None writer = ArrowWriter( stream=buf_writer, writer_batch_size=writer_batch_size, fingerprint=new_fingerprint, unit="indices" ) else: buf_writer = None logger.info("Caching indices mapping at %s", indices_cache_file_name) tmp_file = tempfile.NamedTemporaryFile("wb", dir=os.path.dirname(indices_cache_file_name), delete=False) writer = ArrowWriter( path=tmp_file.name, writer_batch_size=writer_batch_size, fingerprint=new_fingerprint, unit="indices" ) indices_array = pa.array(indices, type=pa.uint64()) # Check if we need to convert indices if self._indices is not None: if PYARROW_V0: indices_array = pa.concat_tables(self._indices.slice(i.as_py(), 1) for i in indices_array).column(0) else: indices_array = self._indices.column(0).take(indices_array) indices_table = pa.Table.from_arrays([indices_array], names=["indices"]) try: writer.write_table(indices_table) writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file except (Exception, KeyboardInterrupt): if tmp_file is not None: if os.path.exists(tmp_file.name): os.remove(tmp_file.name) raise if tmp_file is not None: shutil.move(tmp_file.name, indices_cache_file_name) # Return new Dataset object if buf_writer is None: return self._new_dataset_with_indices( indices_cache_file_name=indices_cache_file_name, fingerprint=new_fingerprint ) else: return self._new_dataset_with_indices(indices_buffer=buf_writer.getvalue(), fingerprint=new_fingerprint)
[docs] @transmit_format @fingerprint(inplace=False) def sort( self, column: str, reverse: bool = False, kind: str = None, keep_in_memory: bool = False, load_from_cache_file: bool = True, indices_cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, new_fingerprint: Optional[str] = None, ) -> "Dataset": """Create a new dataset sorted according to a column. Currently sorting according to a column name uses numpy sorting algorithm under the hood. The column should thus be a numpy compatible type (in particular not a nested type). This also means that the column used for sorting is fully loaded in memory (which should be fine in most cases). Args: column (`str`): column name to sort by. reverse: (`bool`, defaults to `False`): If True, sort by descending order rather then ascending. kind (Optional `str`): Numpy algorithm for sorting selected in {‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, The default is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in general, the actual implementation will vary with data type. The ‘mergesort’ option is retained for backwards compatibility. keep_in_memory (`bool`, defaults to `False`): Keep the sorted indices in memory instead of writing it to a cache file. load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the sorted indices can be identified, use it instead of recomputing. indices_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the sorted indices instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory. new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments """ if len(self.list_indexes()) > 0: raise DatasetTransformationNotAllowedError( "Using `.sort` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it." ) # If the array is empty we do nothing if len(self) == 0: return self # Check the column name if not isinstance(column, str) or column not in self._data.column_names: raise ValueError( "Column '{}' not found in the dataset. Please provide a column selected in: {}".format( column, self._data.column_names, ) ) # Check if we've already cached this computation (indexed by a hash) if self._data_files: if indices_cache_file_name is None: # we create a unique hash from the function, current dataset file and the mapping args indices_cache_file_name = self._get_cache_file_path(new_fingerprint) if os.path.exists(indices_cache_file_name) and load_from_cache_file: logger.warning("Loading cached sorted indices for dataset at %s", indices_cache_file_name) return self._new_dataset_with_indices( fingerprint=new_fingerprint, indices_cache_file_name=indices_cache_file_name ) column_data = self._getitem( column, format_type="numpy", format_columns=None, output_all_columns=False, format_kwargs=None ) indices = np.argsort(column_data, kind=kind) if reverse: indices = indices[::-1] return self.select( indices=indices, keep_in_memory=keep_in_memory, indices_cache_file_name=indices_cache_file_name, writer_batch_size=writer_batch_size, new_fingerprint=new_fingerprint, )
[docs] @transmit_format @fingerprint(inplace=False, randomized_function=True) def shuffle( self, seed: Optional[int] = None, generator: Optional[np.random.Generator] = None, keep_in_memory: bool = False, load_from_cache_file: bool = True, indices_cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, new_fingerprint: Optional[str] = None, ) -> "Dataset": """Create a new Dataset where the rows are shuffled. Currently shuffling uses numpy random generators. You can either supply a NumPy BitGenerator to use, or a seed to initiate NumPy's default random generator (PCG64). Args: seed (Optional `int`): A seed to initialize the default BitGenerator if ``generator=None``. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or array_like[ints] is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state. generator (Optional `np.random.Generator`): Numpy random Generator to use to compute the permutation of the dataset rows. If ``generator=None`` (default), uses np.random.default_rng (the default BitGenerator (PCG64) of NumPy). keep_in_memory (`bool`, defaults to `False`): Keep the shuffled indices in memory instead of writing it to a cache file. load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the shuffled indices can be identified, use it instead of recomputing. indices_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the shuffled indices instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the dataset after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments """ if len(self.list_indexes()) > 0: raise DatasetTransformationNotAllowedError( "Using `.shuffle` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it." ) # If the array is empty we do nothing if len(self) == 0: return self if seed is not None and generator is not None: raise ValueError("Both `seed` and `generator` were provided. Please specify just one of them.") assert generator is None or isinstance( generator, np.random.Generator ), "The provided generator must be an instance of numpy.random.Generator" if generator is None: generator = np.random.default_rng(seed) # Check if we've already cached this computation (indexed by a hash) if self._data_files: if indices_cache_file_name is None: # we create a unique hash from the function, current dataset file and the mapping args indices_cache_file_name = self._get_cache_file_path(new_fingerprint) if os.path.exists(indices_cache_file_name) and load_from_cache_file: logger.warning("Loading cached shuffled indices for dataset at %s", indices_cache_file_name) return self._new_dataset_with_indices( fingerprint=new_fingerprint, indices_cache_file_name=indices_cache_file_name ) permutation = generator.permutation(len(self)) return self.select( indices=permutation, keep_in_memory=keep_in_memory, indices_cache_file_name=indices_cache_file_name, writer_batch_size=writer_batch_size, new_fingerprint=new_fingerprint, )
[docs] @transmit_format @fingerprint( inplace=False, randomized_function=True, fingerprint_names=["train_new_fingerprint", "test_new_fingerprint"] ) def train_test_split( self, test_size: Union[float, int, None] = None, train_size: Union[float, int, None] = None, shuffle: bool = True, seed: Optional[int] = None, generator: Optional[np.random.Generator] = None, keep_in_memory: bool = False, load_from_cache_file: bool = True, train_indices_cache_file_name: Optional[str] = None, test_indices_cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, train_new_fingerprint: Optional[str] = None, test_new_fingerprint: Optional[str] = None, ) -> "DatasetDict": """Return a dictionary (:obj:`datasets.DatsetDict`) with two random train and test subsets (`train` and `test` ``Dataset`` splits). Splits are created from the dataset according to `test_size`, `train_size` and `shuffle`. This method is similar to scikit-learn `train_test_split` with the omission of the stratified options. Args: test_size (Optional `np.random.Generator`): Size of the test split If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If train_size is also None, it will be set to 0.25. train_size (Optional `np.random.Generator`): Size of the train split If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. shuffle (Optional `bool`, defaults to `True`): Whether or not to shuffle the data before splitting. seed (Optional `int`): A seed to initialize the default BitGenerator if ``generator=None``. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or array_like[ints] is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state. generator (Optional `np.random.Generator`): Numpy random Generator to use to compute the permutation of the dataset rows. If ``generator=None`` (default), uses np.random.default_rng (the default BitGenerator (PCG64) of NumPy). keep_in_memory (`bool`, defaults to `False`): Keep the splits indices in memory instead of writing it to a cache file. load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the splits indices can be identified, use it instead of recomputing. train_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the train split indices instead of the automatically generated cache file name. test_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the test split indices instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. train_new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the train set after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments test_new_fingerprint (`Optional[str]`, defaults to `None`): the new fingerprint of the test set after transform. If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments """ from .dataset_dict import DatasetDict # import here because of circular dependency if len(self.list_indexes()) > 0: raise DatasetTransformationNotAllowedError( "Using `.train_test_split` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it." ) # If the array is empty we do nothing if len(self) == 0: return DatasetDict({"train": self, "test": self}) if test_size is None and train_size is None: test_size = 0.25 # Safety checks similar to scikit-learn's ones. # (adapted from https://github.com/scikit-learn/scikit-learn/blob/fd237278e895b42abe8d8d09105cbb82dc2cbba7/sklearn/model_selection/_split.py#L1750) n_samples = len(self) if ( isinstance(test_size, int) and (test_size >= n_samples or test_size <= 0) or isinstance(test_size, float) and (test_size <= 0 or test_size >= 1) ): raise ValueError( f"test_size={test_size} should be either positive and smaller " f"than the number of samples {n_samples} or a float in the (0, 1) range" ) if ( isinstance(train_size, int) and (train_size >= n_samples or train_size <= 0) or isinstance(train_size, float) and (train_size <= 0 or train_size >= 1) ): raise ValueError( f"train_size={train_size} should be either positive and smaller " f"than the number of samples {n_samples} or a float in the (0, 1) range" ) if train_size is not None and not isinstance(train_size, (int, float)): raise ValueError(f"Invalid value for train_size: {train_size} of type {type(train_size)}") if test_size is not None and not isinstance(test_size, (int, float)): raise ValueError(f"Invalid value for test_size: {test_size} of type {type(test_size)}") if isinstance(train_size, float) and isinstance(test_size, float) and train_size + test_size > 1: raise ValueError( f"The sum of test_size and train_size = {train_size + test_size}, should be in the (0, 1)" " range. Reduce test_size and/or train_size." ) if isinstance(test_size, float): n_test = ceil(test_size * n_samples) elif isinstance(test_size, int): n_test = float(test_size) if isinstance(train_size, float): n_train = floor(train_size * n_samples) elif isinstance(train_size, int): n_train = float(train_size) if train_size is None: n_train = n_samples - n_test elif test_size is None: n_test = n_samples - n_train if n_train + n_test > n_samples: raise ValueError( f"The sum of train_size and test_size = {n_train + n_test}, " "should be smaller than the number of " f"samples {n_samples}. Reduce test_size and/or " "train_size." ) n_train, n_test = int(n_train), int(n_test) if n_train == 0: raise ValueError( f"With n_samples={n_samples}, test_size={test_size} and train_size={train_size}, the " "resulting train set will be empty. Adjust any of the " "aforementioned parameters." ) if generator is None and shuffle is True: generator = np.random.default_rng(seed) # Check if we've already cached this computation (indexed by a hash) if self._data_files: if train_indices_cache_file_name is None or test_indices_cache_file_name is None: # we create a unique hash from the function, current dataset file and the mapping args if train_indices_cache_file_name is None: train_indices_cache_file_name = self._get_cache_file_path(train_new_fingerprint) if test_indices_cache_file_name is None: test_indices_cache_file_name = self._get_cache_file_path(test_new_fingerprint) if ( os.path.exists(train_indices_cache_file_name) and os.path.exists(test_indices_cache_file_name) and load_from_cache_file ): logger.warning( "Loading cached split indices for dataset at %s and %s", train_indices_cache_file_name, test_indices_cache_file_name, ) return DatasetDict( { "train": self._new_dataset_with_indices( fingerprint=train_new_fingerprint, indices_cache_file_name=train_indices_cache_file_name ), "test": self._new_dataset_with_indices( fingerprint=test_new_fingerprint, indices_cache_file_name=test_indices_cache_file_name ), } ) if not shuffle: train_indices = np.arange(n_train) test_indices = np.arange(n_train, n_train + n_test) else: # random partition permutation = generator.permutation(len(self)) test_indices = permutation[:n_test] train_indices = permutation[n_test : (n_test + n_train)] train_split = self.select( indices=train_indices, keep_in_memory=keep_in_memory, indices_cache_file_name=train_indices_cache_file_name, writer_batch_size=writer_batch_size, new_fingerprint=train_new_fingerprint, ) test_split = self.select( indices=test_indices, keep_in_memory=keep_in_memory, indices_cache_file_name=test_indices_cache_file_name, writer_batch_size=writer_batch_size, new_fingerprint=test_new_fingerprint, ) return DatasetDict({"train": train_split, "test": test_split})
[docs] def shard( self, num_shards: int, index: int, contiguous: bool = False, keep_in_memory: bool = False, indices_cache_file_name: Optional[str] = None, writer_batch_size: Optional[int] = 1000, ) -> "Dataset": """Return the `index`-nth shard from dataset split into `num_shards` pieces. This shards deterministically. dset.shard(n, i) will contain all elements of dset whose index mod n = i. dset.shard(n, i, contiguous=True) will instead split dset into contiguous chunks, so it can be easily concatenated back together after processing. If n % i == l, then the first l shards will have length (n // i) + 1, and the remaining shards will have length (n // i). `datasets.concatenate([dset.shard(n, i, contiguous=True) for i in range(n)])` will return a dataset with the same order as the original. Be sure to shard before using any randomizing operator (such as shuffle). It is best if the shard operator is used early in the dataset pipeline. Args: num_shards (`int`): How many shards to split the dataset into. index (`int`): Which shard to select and return. contiguous: (`bool`, defaults to `False`): Whether to select contiguous blocks of indices for shards. keep_in_memory (`bool`, defaults to `False`): Keep the dataset in memory instead of writing it to a cache file. load_from_cache_file (`bool`, defaults to `True`): If a cache file storing the current computation from `function` can be identified, use it instead of recomputing. indices_cache_file_name (`Optional[str]`, defaults to `None`): Provide the name of a cache file to use to store the indices of each shard instead of the automatically generated cache file name. writer_batch_size (`int`, defaults to `1000`): Number of rows per write operation for the cache file writer. Higher value gives smaller cache files, lower value consume less temporary memory while running `.map()`. """ assert 0 <= index < num_shards, "index should be in [0, num_shards-1]" if contiguous: div = len(self) // num_shards mod = len(self) % num_shards start = div * index + min(index, mod) end = start + div + (1 if index < mod else 0) indices = np.arange(start, end) else: indices = np.arange(index, len(self), num_shards) return self.select( indices=indices, keep_in_memory=keep_in_memory, indices_cache_file_name=indices_cache_file_name, writer_batch_size=writer_batch_size, )
[docs] def export( self, filename: str, format: str = "tfrecord", ): """Writes the Arrow dataset to a TFRecord file. The dataset must already be in tensorflow format. The records will be written with keys from `dataset._format_columns`. Args: `filename` (`str`): The filename, including the .tfrecord extension, to write to. `format` (`Optional[str]`, default: `"tfrecord"`): The type of output file. Currently this is a no-op, as TFRecords are the only option. This enables a more flexible function signature later. """ try: import tensorflow as tf # noqa: F401 except ImportError: logger.error("Tensorflow needs to be installed to be able to return Tensorflow tensors.") # From https://www.tensorflow.org/tutorials/load_data/tfrecord def _bytes_feature(values): """Returns a bytes_list from a list of string / byte.""" return tf.train.Feature(bytes_list=tf.train.BytesList(value=values)) def _float_feature(values): """Returns a float_list from a list of float / double.""" return tf.train.Feature(float_list=tf.train.FloatList(value=values)) def _int64_feature(values): """Returns an int64_list from a list of bool / enum / int / uint.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=values)) def _feature(values: np.ndarray) -> "tf.train.Feature": """Typechecks `values` and returns the corresponding tf.train.Feature.""" if values.ndim == 0: values = values.item() if isinstance(values, np.ndarray): if values.dtype == np.dtype(float): return _float_feature(values) elif values.dtype == np.dtype(int): return _int64_feature(values) elif values.dtype == np.dtype(str) or ( values.dtype == np.dtype(object) and len(values) > 0 and isinstance(values[0], str) ): return _bytes_feature([v.encode() for v in values]) else: raise ValueError( f"values={values} is an np.ndarray with items of dtype {values[0].dtype}, which cannot be serialized" ) elif isinstance(values, float): return _float_feature([values]) elif isinstance(values, int): return _int64_feature([values]) elif isinstance(values, str): return _bytes_feature([values.encode()]) else: raise ValueError(f"values={values} has dtype {values.dtype}, which cannot be serialized") def serialize_example(ex): feature = {key: _feature(value) for key, value in ex.items()} example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) return example_proto.SerializeToString() def tf_serialize_example(ex): tf_string = tf.py_function(serialize_example, (ex,), tf.string) return tf.reshape(tf_string, ()) def generator(): for ex in self: yield serialize_example(ex) assert self._format_type == "numpy", "Dataset format must be numpy before exporting" assert filename.endswith(".tfrecord") tf_dataset = tf.data.Dataset.from_generator(generator, output_types=tf.string, output_shapes=()) writer = tf.data.experimental.TFRecordWriter(filename) logger.info(f"Writing TFRecord to {filename}") writer.write(tf_dataset) logger.info(f"Finished writing TFRecord to {filename}")
[docs] def add_faiss_index( self, column: str, index_name: Optional[str] = None, device: Optional[int] = None, string_factory: Optional[str] = None, metric_type: Optional[int] = None, custom_index: Optional["faiss.Index"] = None, # noqa: F821 train_size: Optional[int] = None, faiss_verbose: bool = False, dtype=np.float32, ): """Add a dense index using Faiss for fast retrieval. By default the index is done over the vectors of the specified column. You can specify :obj:`device` if you want to run it on GPU (:obj:`device` must be the GPU index). You can find more information about Faiss here: - For `string factory <https://github.com/facebookresearch/faiss/wiki/The-index-factory>`__ Args: column (:obj:`str`): The column of the vectors to add to the index. index_name (Optional :obj:`str`): The index_name/identifier of the index. This is the index_name that is used to call :func:`datasets.Dataset.get_nearest_examples` or :func:`datasets.Dataset.search`. By default it corresponds to `column`. device (Optional :obj:`int`): If not None, this is the index of the GPU to use. By default it uses the CPU. string_factory (Optional :obj:`str`): This is passed to the index factory of Faiss to create the index. Default index class is ``IndexFlat``. metric_type (Optional :obj:`int`): Type of metric. Ex: faiss.faiss.METRIC_INNER_PRODUCT or faiss.METRIC_L2. custom_index (Optional :obj:`faiss.Index`): Custom Faiss index that you already have instantiated and configured for your needs. train_size (Optional :obj:`int`): If the index needs a training step, specifies how many vectors will be used to train the index. faiss_verbose (:obj:`bool`, defaults to False): Enable the verbosity of the Faiss index. dtype (data-type): The dtype of the numpy arrays that are indexed. Default is ``np.float32``. Example:: ds = datasets.load_dataset('crime_and_punish', split='train') ds_with_embeddings = ds.map(lambda example: {'embeddings': embed(example['line']})) ds_with_embeddings.add_faiss_index(column='embeddings') # query scores, retrieved_examples = ds_with_embeddings.get_nearest_examples('embeddings', embed('my new query'), k=10) # save index ds_with_embeddings.save_faiss_index('embeddings', 'my_index.faiss') ds = datasets.load_dataset('crime_and_punish', split='train') # load index ds.load_faiss_index('embeddings', 'my_index.faiss') # query scores, retrieved_examples = ds.get_nearest_examples('embeddings', embed('my new query'), k=10) """ with self.formatted_as(type="numpy", columns=[column], dtype=dtype): super().add_faiss_index( column=column, index_name=index_name, device=device, string_factory=string_factory, metric_type=metric_type, custom_index=custom_index, train_size=train_size, faiss_verbose=faiss_verbose, ) return self
[docs] def add_faiss_index_from_external_arrays( self, external_arrays: np.array, index_name: str, device: Optional[int] = None, string_factory: Optional[str] = None, metric_type: Optional[int] = None, custom_index: Optional["faiss.Index"] = None, # noqa: F821 train_size: Optional[int] = None, faiss_verbose: bool = False, dtype=np.float32, ): """Add a dense index using Faiss for fast retrieval. The index is created using the vectors of `external_arrays`. You can specify `device` if you want to run it on GPU (`device` must be the GPU index). You can find more information about Faiss here: - For `string factory <https://github.com/facebookresearch/faiss/wiki/The-index-factory>`__ Args: external_arrays (:obj:`np.array`): If you want to use arrays from outside the lib for the index, you can set :obj:`external_arrays`. It will use :obj:`external_arrays` to create the Faiss index instead of the arrays in the given :obj:`column`. index_name (:obj:`str`): The index_name/identifier of the index. This is the index_name that is used to call :func:`datasets.Dataset.get_nearest_examples` or :func:`datasets.Dataset.search`. device (Optional :obj:`int`): If not None, this is the index of the GPU to use. By default it uses the CPU. string_factory (Optional :obj:`str`): This is passed to the index factory of Faiss to create the index. Default index class is ``IndexFlat``. metric_type (Optional :obj:`int`): Type of metric. Ex: faiss.faiss.METRIC_INNER_PRODUCT or faiss.METRIC_L2. custom_index (Optional :obj:`faiss.Index`): Custom Faiss index that you already have instantiated and configured for your needs. train_size (Optional :obj:`int`): If the index needs a training step, specifies how many vectors will be used to train the index. faiss_verbose (:obj:`bool`, defaults to False): Enable the verbosity of the Faiss index. dtype (:obj:`numpy.dtype`): The dtype of the numpy arrays that are indexed. Default is np.float32. """ super().add_faiss_index_from_external_arrays( external_arrays=external_arrays.astype(dtype), index_name=index_name, device=device, string_factory=string_factory, metric_type=metric_type, custom_index=custom_index, train_size=train_size, faiss_verbose=faiss_verbose, )
[docs] def add_elasticsearch_index( self, column: str, index_name: Optional[str] = None, host: Optional[str] = None, port: Optional[int] = None, es_client: Optional["elasticsearch.Elasticsearch"] = None, # noqa: F821 es_index_name: Optional[str] = None, es_index_config: Optional[dict] = None, ): """Add a text index using ElasticSearch for fast retrieval. This is done in-place. Args: column (:obj:`str`): The column of the documents to add to the index. index_name (Optional :obj:`str`): The index_name/identifier of the index. This is the index name that is used to call :func:`datasets.Dataset.get_nearest_examples` or :func:`datasets.Dataset.search`. By default it corresponds to :obj:`column`. documents (:obj:`Union[List[str], datasets.Dataset]`): The documents to index. It can be a :class:`datasets.Dataset`. es_client (:obj:`elasticsearch.Elasticsearch`): The elasticsearch client used to create the index. es_index_name (Optional :obj:`str`): The elasticsearch index name used to create the index. es_index_config (Optional :obj:`dict`): The configuration of the elasticsearch index. Default config is: Config:: { "settings": { "number_of_shards": 1, "analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, }, "mappings": { "properties": { "text": { "type": "text", "analyzer": "standard", "similarity": "BM25" }, } }, } Example:: es_client = elasticsearch.Elasticsearch() ds = datasets.load_dataset('crime_and_punish', split='train') ds.add_elasticsearch_index(column='line', es_client=es_client, es_index_name="my_es_index") scores, retrieved_examples = ds.get_nearest_examples('line', 'my new query', k=10) """ with self.formatted_as(type=None, columns=[column]): super().add_elasticsearch_index( column=column, host=host, port=port, es_client=es_client, index_name=index_name ) return self
[docs]def concatenate_datasets( dsets: List[Dataset], info: Optional[Any] = None, split: Optional[Any] = None, ): """ Converts a list of :obj:``datasets.Dataset`` with the same schema into a single :obj:``datasets.Dataset``. Args: dsets (:obj:``List[datasets.Dataset]``): A list of Datasets to concatenate info (:obj:``datasets.DatasetInfo``, `optional`, defaults to :obj:``None``): If specified, the dataset info containing info like description, citation, etc. split (:obj:``datasets.NamedSplit``, `optional`, defaults to :obj:``None``): If specified, the name of the dataset split. """ if not all([dset.features.type == dsets[0].features.type for dset in dsets]): raise ValueError("Features must match for all datasets") # Datasets tables should all come from disk or memory, but not a mix dsets_in_memory = [not dset._data_files for dset in dsets] if any(dset_in_memory != dsets_in_memory[0] for dset_in_memory in dsets_in_memory): raise ValueError( "Datasets should ALL come from memory, or should ALL come from disk.\n" "However datasets {} come from memory and datasets {} come from disk.".format( [i for i in range(len(dsets)) if dsets_in_memory[i]], [i for i in range(len(dsets)) if not dsets_in_memory[i]], ) ) # Find common format or reset format format = dsets[0].format if any(dset.format != format for dset in dsets): format = {} logger.info("Some of the datasets have disparate format. Resetting the format of the concatenated dataset.") # Concatenate tables table = pa.concat_tables(dset._data for dset in dsets if len(dset._data) > 0) data_files = [f for dset in dsets for f in dset._data_files] inplace_history = [h for dset in dsets for h in dset._inplace_history] def apply_offset_to_indices_table(table, offset): if offset == 0: return table else: array = table["indices"] if isinstance(array, pa.ChunkedArray): new_array = pa.array(np.concatenate([c.to_numpy() for c in array.chunks]) + offset, pa.uint64()) else: new_array = pa.array(array.to_numpy() + offset, pa.uint64()) return pa.Table.from_arrays([new_array], names=["indices"]) # Concatenate indices if they exist if any(dset._indices is not None for dset in dsets): # Datasets indices tables should all come from disk or memory, but not a mix # Datasets with no indices tables are replaced with a dataset with an indicies table in memory indices_mappings_in_memory = [not dset._indices_data_files for dset in dsets] if any( indices_mapping_in_memory != indices_mappings_in_memory[0] for indices_mapping_in_memory in indices_mappings_in_memory ): raise ValueError( "Datasets' indices should ALL come from memory, or should ALL come from disk.\n" "However datasets' indices {} come from memory and datasets' indices {} come from disk.".format( [i for i in range(len(dsets)) if indices_mappings_in_memory[i]], [i for i in range(len(dsets)) if not indices_mappings_in_memory[i]], ) ) indices_in_memory = indices_mappings_in_memory[0] # Create missing indices tables in memory if indices_in_memory: for i in range(len(dsets)): if dsets[i]._indices is None: dsets[i] = dsets[i].select(range(len(dsets[i]))) assert all(dset._indices is not None for dset in dsets), "each dataset should have an indices table" # An offset needs to be applied to the indices before concatenating indices_tables = [] offset = 0 for dset in dsets: indices_tables.append(apply_offset_to_indices_table(dset._indices, offset)) offset += len(dset._data) # Concatenate indices indices_tables = [t for t in indices_tables if len(t) > 0] if indices_tables: indices_table = pa.concat_tables(indices_tables) else: indices_table = pa.Table.from_batches([], schema=pa.schema({"indices": pa.int64()})) indices_data_files = None # can't reuse same files as an offset was applied else: indices_table = None indices_data_files = None if info is None: info = DatasetInfo.from_merge([dset.info for dset in dsets]) fingerprint = update_fingerprint( "".join(dset._fingerprint for dset in dsets), concatenate_datasets, {"info": info, "split": split} ) concatenated_dataset = Dataset( table, info=info, split=split, data_files=data_files, indices_table=indices_table, indices_data_files=indices_data_files, fingerprint=fingerprint, inplace_history=inplace_history, ) concatenated_dataset.set_format(**format) return concatenated_dataset
# This is outside Dataset.filter as it needs to be picklable for multiprocessing # transform the filter function into the map function def map_function(batch, *args, function=None, with_indices=None, **fn_kwargs): assert function is not None and with_indices is not None result = defaultdict(list) num_examples = len(batch[next(iter(batch.keys()))]) input_columns = fn_kwargs.pop("input_columns", None) # create single examples for i in range(num_examples): example = map_nested(lambda x: x[i], batch, dict_only=True) fn_args = [example] if input_columns is None else [example[col] for col in input_columns] # check if example should be filtered or not if with_indices: keep_example = function(*fn_args, args[0][i], **fn_kwargs) else: keep_example = function(*fn_args, **fn_kwargs) assert isinstance( keep_example, bool ), f"The filter function returns a variable of type {type(keep_example)}, but should return a variable of type `bool`." # if example shall be kept add to result if keep_example: for key in batch.keys(): result[key].append(example[key]) # if no example shall be kept, init with empty list if bool(result) is False: for key in batch.keys(): result[key] = [] return result