Source code for nlp.features

# coding=utf-8
# Copyright 2020 The HuggingFace NLP Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
""" This class handle features definition in datasets and some utilities to display table type."""
import logging
from collections.abc import Iterable
from dataclasses import dataclass, field
from typing import Any, ClassVar, Dict, List, Optional, Tuple, Union

import pyarrow as pa

from . import utils


logger = logging.getLogger(__name__)


def string_to_arrow(type_str: str):
    if type_str not in pa.__dict__:
        if str(type_str + "_") not in pa.__dict__:
            raise ValueError(
                f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. "
                f"Please make sure to use a correct data type, see: "
                f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions"
            )
        arrow_data_type_str = str(type_str + "_")
    else:
        arrow_data_type_str = type_str

    return pa.__dict__[arrow_data_type_str]()


[docs]@dataclass class Value: """ Encapsulate an Arrow datatype for easy serialization. """ dtype: str id: Optional[str] = None # Automatically constructed pa_type: ClassVar[Any] = None _type: str = field(default="Value", init=False, repr=False) def __post_init__(self): if self.dtype == "double": # fix inferred type self.dtype = "float64" if self.dtype == "float": # fix inferred type self.dtype = "float32" self.pa_type = string_to_arrow(self.dtype) def __call__(self): return self.pa_type def encode_example(self, value): if pa.types.is_boolean(self.pa_type): return bool(value) elif pa.types.is_integer(self.pa_type): return int(value) elif pa.types.is_floating(self.pa_type): return float(value) else: return value
[docs]@dataclass class Tensor: """ Construct a 0D or 1D Tensor feature. If 0D, the Tensor is an dtype element, if 1D it will be a fixed length list or dtype elements. Mostly here for compatiblity with tfds. """ shape: Union[Tuple[int], List[int]] dtype: str id: Optional[str] = None # Automatically constructed pa_type: ClassVar[Any] = None _type: str = field(default="Tensor", init=False, repr=False) def __post_init__(self): assert len(self.shape) < 2, "Tensor can only take 0 or 1 dimensional shapes ." if len(self.shape) == 1: self.pa_type = pa.list_(string_to_arrow(self.dtype), self.shape[0]) else: self.pa_type = string_to_arrow(self.dtype) def __call__(self): return self.pa_type
[docs]@dataclass class ClassLabel: """ Handle integer class labels. Here for compatiblity with tfds. There are 3 ways to define a ClassLabel, which correspond to the 3 arguments: * `num_classes`: create 0 to (num_classes-1) labels * `names`: a list of label strings * `names_file`: a file containing the list of labels. Note: On python2, the strings are encoded as utf-8. Args: num_classes: `int`, number of classes. All labels must be < num_classes. names: `list<str>`, string names for the integer classes. The order in which the names are provided is kept. names_file: `str`, path to a file with names for the integer classes, one per line. """ num_classes: int = None names: List[str] = None names_file: str = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "int64" pa_type: ClassVar[Any] = pa.int64() _str2int: ClassVar[Dict[str, int]] = None _int2str: ClassVar[Dict[int, int]] = None _type: str = field(default="ClassLabel", init=False, repr=False) def __post_init__(self): # The label is explicitly set as undefined (no label defined) if not sum(bool(a) for a in (self.num_classes, self.names, self.names_file)): return # if sum(bool(a) for a in (self.num_classes, self.names, self.names_file)) != 1: # raise ValueError("Only a single argument of ClassLabel() should be provided.") if self.num_classes is None: if self.names is None: self.names = self._load_names_from_file(self.names_file) else: if self.names is None: self.names = [str(i) for i in range(self.num_classes)] elif len(self.names) != self.num_classes: raise ValueError( "ClassLabel number of names do not match the defined num_classes. " "Got {} names VS {} num_classes".format(len(self.names), self.num_classes) ) # Prepare mappings self._int2str = [str(name) for name in self.names] self._str2int = {name: i for i, name in enumerate(self._int2str)} if len(self._int2str) != len(self._str2int): raise ValueError("Some label names are duplicated. Each label name should be unique.") # If num_classes has been defined, ensure that num_classes and names match num_classes = len(self._str2int) if self.num_classes is None: self.num_classes = num_classes elif self.num_classes != num_classes: raise ValueError( "ClassLabel number of names do not match the defined num_classes. " "Got {} names VS {} num_classes".format(num_classes, self.num_classes) ) def __call__(self): return self.pa_type
[docs] def str2int(self, values: Union[str, Iterable]): """Conversion class name string => integer.""" assert isinstance(values, str) or isinstance(values, Iterable), ( f"Values {values} should be a string " f"or an Iterable (list, numpy array, pytorch, tensorflow tensors" ) return_list = True if isinstance(values, str): values = [values] return_list = False output = [] for value in values: if self._str2int: # strip key if not in dict if value not in self._str2int: value = value.strip() output.append(self._str2int[str(value)]) else: # No names provided, try to integerize failed_parse = False try: output.append(int(value)) except ValueError: failed_parse = True if failed_parse or not 0 <= value < self.num_classes: raise ValueError("Invalid string class label %s" % value) return output if return_list else output[0]
[docs] def int2str(self, values: Union[int, Iterable]): """Conversion integer => class name string.""" assert isinstance(values, int) or isinstance(values, Iterable), ( f"Values {values} should be an integer " f"or an Iterable (list, numpy array, pytorch, tensorflow tensors" ) return_list = True if isinstance(values, int): values = [values] return_list = False if any(not 0 <= v < self.num_classes for v in values): raise ValueError("Invalid integer class label %d" % values) if self._int2str: output = [self._int2str[int(v)] for v in values] else: # No names provided, return str(values) output = [str(v) for v in values] return output if return_list else output[0]
def encode_example(self, example_data): if self.num_classes is None: raise ValueError( "Trying to use ClassLabel feature with undefined number of class. " "Please set ClassLabel.names or num_classes." ) # If a string is given, convert to associated integer if isinstance(example_data, str): example_data = self.str2int(example_data) # Allowing -1 to mean no label. if not -1 <= example_data < self.num_classes: raise ValueError( "Class label %d greater than configured num_classes %d" % (example_data, self.num_classes) ) return example_data @staticmethod def _load_names_from_file(names_filepath): with open(names_filepath, "r") as f: return [name.strip() for name in f.read().split("\n") if name.strip()] # Filter empty names
[docs]@dataclass class Translation: """`FeatureConnector` for translations with fixed languages per example. Here for compatiblity with tfds. Input: The Translate feature accepts a dictionary for each example mapping string language codes to string translations. Output: A dictionary mapping string language codes to translations as `Text` features. Example:: # At construction time: nlp.features.Translation(languages=['en', 'fr', 'de']) # During data generation: yield { 'en': 'the cat', 'fr': 'le chat', 'de': 'die katze' } """ languages: List[str] id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="Translation", init=False, repr=False) def __call__(self): return pa.struct({lang: pa.string() for lang in sorted(self.languages)})
[docs]@dataclass class TranslationVariableLanguages: """`FeatureConnector` for translations with variable languages per example. Here for compatiblity with tfds. Input: The TranslationVariableLanguages feature accepts a dictionary for each example mapping string language codes to one or more string translations. The languages present may vary from example to example. Output: language: variable-length 1D tf.Tensor of tf.string language codes, sorted in ascending order. translation: variable-length 1D tf.Tensor of tf.string plain text translations, sorted to align with language codes. Example:: # At construction time: nlp.features.Translation(languages=['en', 'fr', 'de']) # During data generation: yield { 'en': 'the cat', 'fr': ['le chat', 'la chatte,'] 'de': 'die katze' } # Tensor returned : { 'language': ['en', 'de', 'fr', 'fr'], 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], } """ languages: List = None num_languages: int = None id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "dict" pa_type: ClassVar[Any] = None _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) def __post_init__(self): self.languages = list(sorted(list(set(self.languages)))) if self.languages else None self.num_languages = len(self.languages) if self.languages else None def __call__(self): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def encode_example(self, translation_dict): lang_set = set(self.languages) if self.languages and set(translation_dict) - lang_set: raise ValueError( "Some languages in example ({0}) are not in valid set ({1}).".format( ", ".join(sorted(set(translation_dict) - lang_set)), ", ".join(lang_set) ) ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. translation_tuples = [] for lang, text in translation_dict.items(): if isinstance(text, str): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. languages, translations = zip(*sorted(translation_tuples)) return {"language": languages, "translation": translations}
[docs]@dataclass class Sequence: """ Construct a list of feature from a single type or a dict of types. Mostly here for compatiblity with tfds. """ feature: Any length: int = -1 id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "list" pa_type: ClassVar[Any] = None _type: str = field(default="Sequence", init=False, repr=False)
FeatureType = Union[dict, list, tuple, Value, Tensor, ClassLabel, Translation, TranslationVariableLanguages, Sequence] def get_nested_type(schema: FeatureType) -> pa.DataType: """ Convert our Feature nested object in an Apache Arrow type """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): return pa.struct( {key: get_nested_type(schema[key]) for key in sorted(schema)} ) # sort to make the type deterministic elif isinstance(schema, (list, tuple)): assert len(schema) == 1, "We defining list feature, you should just provide one example of the inner type" inner_type = get_nested_type(schema[0]) return pa.list_(inner_type) elif isinstance(schema, Sequence): inner_type = get_nested_type(schema.feature) # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(inner_type, pa.StructType): return pa.struct(dict(sorted((f.name, pa.list_(f.type, schema.length)) for f in inner_type))) return pa.list_(inner_type, schema.length) # Other objects are callable which returns their data type (ClassLabel, Tensor, Translation, Arrow datatype creation methods) return schema() def encode_nested_example(schema, obj): """ Encode a nested example. This is used since some features (in particular ClassLabel) have some logic during encoding. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(schema, dict): return dict( (k, encode_nested_example(sub_schema, sub_obj)) for k, (sub_schema, sub_obj) in utils.zip_dict(schema, obj) ) elif isinstance(schema, (list, tuple)): sub_schema = schema[0] return [encode_nested_example(sub_schema, o) for o in obj] elif isinstance(schema, Sequence): # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): # dict of list to fill list_dict = {} if isinstance(obj, (list, tuple)): # obj is a list of dict for k, dict_tuples in utils.zip_dict(schema.feature, *obj): list_dict[k] = [encode_nested_example(dict_tuples[0], o) for o in dict_tuples[1:]] return list_dict else: # obj is a single dict for k, (sub_schema, sub_objs) in utils.zip_dict(schema.feature, obj): list_dict[k] = [encode_nested_example(sub_schema, o) for o in sub_objs] return list_dict # schema.feature is not a dict if isinstance(obj, str): # don't interpret a string as a list raise ValueError("Got a string but expected a list instead: '{}'".format(obj)) return [encode_nested_example(schema.feature, o) for o in obj] # Object with special encoding: # ClassLabel will convert from string to int, TranslationVariableLanguages does some checks elif isinstance(schema, (ClassLabel, TranslationVariableLanguages, Value)): return schema.encode_example(obj) # Other object should be directly convertible to a native Arrow type (like Translation and Translation) return obj def generate_from_dict(obj: Any): """ Regenerate the nested feature object from a serialized dict. We use the '_type' fields to get the dataclass name to load. """ # Nested structures: we allow dict, list/tuples, sequences if isinstance(obj, list): return [generate_from_dict(value) for value in obj] # Otherwise we have a dict or a dataclass if "_type" not in obj: return {key: generate_from_dict(value) for key, value in obj.items()} class_type = globals()[obj.pop("_type")] if class_type == Sequence: return Sequence(feature=generate_from_dict(obj["feature"]), length=obj["length"]) return class_type(**obj) def generate_from_arrow_type(pa_type: pa.DataType): if isinstance(pa_type, pa.StructType): return {field.name: generate_from_arrow_type(field.type) for field in pa_type} elif isinstance(pa_type, pa.FixedSizeListType): return Sequence(feature=generate_from_arrow_type(pa_type.value_type), length=pa_type.list_size) elif isinstance(pa_type, pa.ListType): feature = generate_from_arrow_type(pa_type.value_type) if isinstance(feature, (dict, tuple, list)): return [feature] return Sequence(feature=feature) elif isinstance(pa_type, pa.DictionaryType): raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table elif isinstance(pa_type, pa.DataType): return Value(dtype=str(pa_type)) else: raise ValueError(f"Cannot convert {pa_type} to a Feature type.")
[docs]class Features(dict): @property def type(self): return get_nested_type(self) @classmethod def from_arrow_schema(cls, pa_schema: pa.Schema) -> "Features": obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} return cls(**obj) @classmethod def from_dict(cls, dic) -> "Features": obj = generate_from_dict(dic) return cls(**obj) def encode_example(self, example): return encode_nested_example(self, example)