--- license: mit tags: - generated_from_trainer datasets: - common_voice_7_0 metrics: - wer base_model: facebook/w2v-bert-2.0 model-index: - name: w2v-bert-2.0-luganda-CV-train-validation-7.0 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_7_0 type: common_voice_7_0 config: lg split: test args: lg metrics: - type: wer value: 0.18224972173115955 name: Wer --- # w2v-bert-2.0-luganda-CV-train-validation-7.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_7_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2122 - Wer: 0.1822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.31 | 1.89 | 300 | 0.2527 | 0.2845 | | 0.112 | 3.77 | 600 | 0.2177 | 0.2326 | | 0.0698 | 5.66 | 900 | 0.2085 | 0.2127 | | 0.0426 | 7.55 | 1200 | 0.2024 | 0.1941 | | 0.0272 | 9.43 | 1500 | 0.2122 | 0.1822 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2