--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm300_aug9 results: [] --- # distilbert-base-uncased-finetuned-ft1500_norm300_aug9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0639 - Mse: 4.2557 - Mae: 1.3660 - R2: 0.4773 - Accuracy: 0.3664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.7595 | 1.0 | 3242 | 1.1009 | 4.4036 | 1.4148 | 0.4591 | 0.3440 | | 0.6024 | 2.0 | 6484 | 1.0896 | 4.3582 | 1.3732 | 0.4647 | 0.3690 | | 0.3745 | 3.0 | 9726 | 1.0639 | 4.2557 | 1.3660 | 0.4773 | 0.3664 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1