File size: 1,956 Bytes
87faf3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_fantastic_patent_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_fantastic_patent_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0021
- Rouge1: 0.2236
- Rouge2: 0.1231
- Rougel: 0.1932
- Rougelsum: 0.1933
- Gen Len: 18.9373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.4015 | 1.0 | 625 | 2.0728 | 0.2182 | 0.116 | 0.1868 | 0.1868 | 18.9365 |
| 2.194 | 2.0 | 1250 | 2.0275 | 0.2215 | 0.1203 | 0.1911 | 0.1912 | 18.9371 |
| 2.1739 | 3.0 | 1875 | 2.0078 | 0.2235 | 0.1228 | 0.1931 | 0.1932 | 18.9371 |
| 2.1381 | 4.0 | 2500 | 2.0021 | 0.2236 | 0.1231 | 0.1932 | 0.1933 | 18.9373 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|