# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Compression models or wrapper around existing models. Also defines the main interface that a model must follow to be usable as an audio tokenizer. """ from abc import ABC, abstractmethod import logging import math from pathlib import Path import typing as tp from einops import rearrange import numpy as np import torch from torch import nn from transformers import EncodecModel as HFEncodecModel import audiocraft.quantization as qt logger = logging.getLogger() class CompressionModel(ABC, nn.Module): """Base API for all compression models that aim at being used as audio tokenizers with a language model. """ @abstractmethod def forward(self, x: torch.Tensor) -> qt.QuantizedResult: ... @abstractmethod def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """See `EncodecModel.encode`.""" ... @abstractmethod def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """See `EncodecModel.decode`.""" ... @abstractmethod def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" ... @property @abstractmethod def channels(self) -> int: ... @property @abstractmethod def frame_rate(self) -> float: ... @property @abstractmethod def sample_rate(self) -> int: ... @property @abstractmethod def cardinality(self) -> int: ... @property @abstractmethod def num_codebooks(self) -> int: ... @property @abstractmethod def total_codebooks(self) -> int: ... @abstractmethod def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer.""" ... @staticmethod def get_pretrained( name: str, device: tp.Union[torch.device, str] = 'cpu' ) -> 'CompressionModel': """Instantiate a CompressionModel from a given pretrained model. Args: name (Path or str): name of the pretrained model. See after. device (torch.device or str): Device on which the model is loaded. Pretrained models: - dac_44khz (https://github.com/descriptinc/descript-audio-codec) - dac_24khz (same) - facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz) - facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz) - your own model on Hugging Face. Export instructions to come... """ from . import builders, loaders model: CompressionModel if name in ['dac_44khz', 'dac_24khz']: model_type = name.split('_')[1] logger.info("Getting pretrained compression model from DAC %s", model_type) model = DAC(model_type) elif name in ['debug_compression_model']: logger.info("Getting pretrained compression model for debug") model = builders.get_debug_compression_model() elif Path(name).exists(): # We assume here if the path exists that it is in fact an AC checkpoint # that was exported using `audiocraft.utils.export` functions. model = loaders.load_compression_model(name, device=device) else: logger.info("Getting pretrained compression model from HF %s", name) hf_model = HFEncodecModel.from_pretrained(name) model = HFEncodecCompressionModel(hf_model).to(device) return model.to(device).eval() class EncodecModel(CompressionModel): """Encodec model operating on the raw waveform. Args: encoder (nn.Module): Encoder network. decoder (nn.Module): Decoder network. quantizer (qt.BaseQuantizer): Quantizer network. frame_rate (int): Frame rate for the latent representation. sample_rate (int): Audio sample rate. channels (int): Number of audio channels. causal (bool): Whether to use a causal version of the model. renormalize (bool): Whether to renormalize the audio before running the model. """ # we need assignment to override the property in the abstract class, # I couldn't find a better way... frame_rate: float = 0 sample_rate: int = 0 channels: int = 0 def __init__(self, encoder: nn.Module, decoder: nn.Module, quantizer: qt.BaseQuantizer, frame_rate: int, sample_rate: int, channels: int, causal: bool = False, renormalize: bool = False): super().__init__() self.encoder = encoder self.decoder = decoder self.quantizer = quantizer self.frame_rate = frame_rate self.sample_rate = sample_rate self.channels = channels self.renormalize = renormalize self.causal = causal if self.causal: # we force disabling here to avoid handling linear overlap of segments # as supported in original EnCodec codebase. assert not self.renormalize, 'Causal model does not support renormalize' @property def total_codebooks(self): """Total number of quantizer codebooks available.""" return self.quantizer.total_codebooks @property def num_codebooks(self): """Active number of codebooks used by the quantizer.""" return self.quantizer.num_codebooks def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer.""" self.quantizer.set_num_codebooks(n) @property def cardinality(self): """Cardinality of each codebook.""" return self.quantizer.bins def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: scale: tp.Optional[torch.Tensor] if self.renormalize: mono = x.mean(dim=1, keepdim=True) volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt() scale = 1e-8 + volume x = x / scale scale = scale.view(-1, 1) else: scale = None return x, scale def postprocess(self, x: torch.Tensor, scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor: if scale is not None: assert self.renormalize x = x * scale.view(-1, 1, 1) return x def forward(self, x: torch.Tensor) -> qt.QuantizedResult: assert x.dim() == 3 length = x.shape[-1] x, scale = self.preprocess(x) emb = self.encoder(x) q_res = self.quantizer(emb, self.frame_rate) out = self.decoder(q_res.x) # remove extra padding added by the encoder and decoder assert out.shape[-1] >= length, (out.shape[-1], length) out = out[..., :length] q_res.x = self.postprocess(out, scale) return q_res def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """Encode the given input tensor to quantized representation along with scale parameter. Args: x (torch.Tensor): Float tensor of shape [B, C, T] Returns: codes, scale (tuple of torch.Tensor, torch.Tensor): Tuple composed of: codes: a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep. scale: a float tensor containing the scale for audio renormalization. """ assert x.dim() == 3 x, scale = self.preprocess(x) emb = self.encoder(x) codes = self.quantizer.encode(emb) return codes, scale def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """Decode the given codes to a reconstructed representation, using the scale to perform audio denormalization if needed. Args: codes (torch.Tensor): Int tensor of shape [B, K, T] scale (torch.Tensor, optional): Float tensor containing the scale value. Returns: out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio. """ emb = self.decode_latent(codes) out = self.decoder(emb) out = self.postprocess(out, scale) # out contains extra padding added by the encoder and decoder return out def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" return self.quantizer.decode(codes) class DAC(CompressionModel): def __init__(self, model_type: str = "44khz"): super().__init__() try: import dac.utils except ImportError: raise RuntimeError("Could not import dac, make sure it is installed, " "please run `pip install descript-audio-codec`") self.model = dac.utils.load_model(model_type=model_type) self.n_quantizers = self.total_codebooks self.model.eval() def forward(self, x: torch.Tensor) -> qt.QuantizedResult: # We don't support training with this. raise NotImplementedError("Forward and training with DAC not supported.") def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: codes = self.model.encode(x, self.n_quantizers)[1] return codes[:, :self.n_quantizers], None def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): assert scale is None z_q = self.decode_latent(codes) return self.model.decode(z_q) def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" return self.model.quantizer.from_codes(codes)[0] @property def channels(self) -> int: return 1 @property def frame_rate(self) -> float: return self.model.sample_rate / self.model.hop_length @property def sample_rate(self) -> int: return self.model.sample_rate @property def cardinality(self) -> int: return self.model.codebook_size @property def num_codebooks(self) -> int: return self.n_quantizers @property def total_codebooks(self) -> int: return self.model.n_codebooks def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. """ assert n >= 1 assert n <= self.total_codebooks self.n_quantizers = n class HFEncodecCompressionModel(CompressionModel): """Wrapper around HuggingFace Encodec. """ def __init__(self, model: HFEncodecModel): super().__init__() self.model = model bws = self.model.config.target_bandwidths num_codebooks = [ bw * 1000 / (self.frame_rate * math.log2(self.cardinality)) for bw in bws ] deltas = [nc - int(nc) for nc in num_codebooks] # Checking we didn't do some bad maths and we indeed have integers! assert all(deltas) <= 1e-3, deltas self.possible_num_codebooks = [int(nc) for nc in num_codebooks] self.set_num_codebooks(max(self.possible_num_codebooks)) def forward(self, x: torch.Tensor) -> qt.QuantizedResult: # We don't support training with this. raise NotImplementedError("Forward and training with HF EncodecModel not supported.") def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: bandwidth_index = self.possible_num_codebooks.index(self.num_codebooks) bandwidth = self.model.config.target_bandwidths[bandwidth_index] res = self.model.encode(x, None, bandwidth) assert len(res[0]) == 1 assert len(res[1]) == 1 return res[0][0], res[1][0] def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): if scale is None: scales = [None] # type: ignore else: scales = scale # type: ignore res = self.model.decode(codes[None], scales) return res[0] def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" return self.model.quantizer.decode(codes.transpose(0, 1)) @property def channels(self) -> int: return self.model.config.audio_channels @property def frame_rate(self) -> float: hop_length = int(np.prod(self.model.config.upsampling_ratios)) return self.sample_rate / hop_length @property def sample_rate(self) -> int: return self.model.config.sampling_rate @property def cardinality(self) -> int: return self.model.config.codebook_size @property def num_codebooks(self) -> int: return self._num_codebooks @property def total_codebooks(self) -> int: return max(self.possible_num_codebooks) def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. """ if n not in self.possible_num_codebooks: raise ValueError(f"Allowed values for num codebooks: {self.possible_num_codebooks}") self._num_codebooks = n class InterleaveStereoCompressionModel(CompressionModel): """Wraps a CompressionModel to support stereo inputs. The wrapped model will be applied independently to the left and right channels, and both codebooks will be interleaved. If the wrapped model returns a representation `[B, K ,T]` per channel, then the output will be `[B, K * 2, T]` or `[B, K, T * 2]` depending on `per_timestep`. Args: model (CompressionModel): Compression model to wrap. per_timestep (bool): Whether to interleave on the timestep dimension or on the codebooks dimension. """ def __init__(self, model: CompressionModel, per_timestep: bool = False): super().__init__() self.model = model self.per_timestep = per_timestep assert self.model.channels == 1, "Wrapped model is expected to be for monophonic audio" @property def total_codebooks(self): return self.model.total_codebooks @property def num_codebooks(self): """Active number of codebooks used by the quantizer. ..Warning:: this reports the number of codebooks after the interleaving of the codebooks! """ return self.model.num_codebooks if self.per_timestep else self.model.num_codebooks * 2 def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer. ..Warning:: this sets the number of codebooks before the interleaving! """ self.model.set_num_codebooks(n) @property def num_virtual_steps(self) -> float: """Return the number of virtual steps, e.g. one real step will be split into that many steps. """ return 2 if self.per_timestep else 1 @property def frame_rate(self) -> float: return self.model.frame_rate * self.num_virtual_steps @property def sample_rate(self) -> int: return self.model.sample_rate @property def channels(self) -> int: return 2 @property def cardinality(self): """Cardinality of each codebook. """ return self.model.cardinality def forward(self, x: torch.Tensor) -> qt.QuantizedResult: raise NotImplementedError("Not supported, use encode and decode.") def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: B, C, T = x.shape assert C == self.channels, f"Expecting stereo audio but audio num channels is {C}" indices_c0, scales_c0 = self.model.encode(x[:, 0, ...].unsqueeze(1)) indices_c1, scales_c1 = self.model.encode(x[:, 1, ...].unsqueeze(1)) indices = torch.stack([indices_c0, indices_c1], dim=0) scales: tp.Optional[torch.Tensor] = None if scales_c0 is not None and scales_c1 is not None: scales = torch.stack([scales_c0, scales_c1], dim=1) if self.per_timestep: indices = rearrange(indices, 'c b k t -> b k (t c)', c=2) else: indices = rearrange(indices, 'c b k t -> b (k c) t', c=2) return (indices, scales) def get_left_right_codes(self, codes: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]: if self.per_timestep: codes = rearrange(codes, 'b k (t c) -> c b k t', c=2) else: codes = rearrange(codes, 'b (k c) t -> c b k t', c=2) return codes[0], codes[1] def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): B, K, T = codes.shape assert T % self.num_virtual_steps == 0, "Provided codes' number of timesteps does not match" assert K == self.num_codebooks, "Provided codes' number of codebooks does not match" scale_c0, scale_c1 = None, None if scale is not None: assert scale.size(0) == B and scale.size(1) == 2, f"Scale has unexpected shape: {scale.shape}" scale_c0 = scale[0, ...] scale_c1 = scale[1, ...] codes_c0, codes_c1 = self.get_left_right_codes(codes) audio_c0 = self.model.decode(codes_c0, scale_c0) audio_c1 = self.model.decode(codes_c1, scale_c1) return torch.cat([audio_c0, audio_c1], dim=1) def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" raise NotImplementedError("Not supported by interleaved stereo wrapped models.")