--- metrics: - precision - recall - f1 - accuracy model-index: - name: binary_classification results: [] --- # binary_classification - Loss: 0.0159 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 9 | 0.0159 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 18 | 0.0030 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 27 | 0.0023 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 4.0 | 36 | 0.0028 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 5.0 | 45 | 0.0018 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 6.0 | 54 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 7.0 | 63 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 8.0 | 72 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.0.1 - Datasets 2.19.1 - Tokenizers 0.19.1