--- tags: - token-classification datasets: - djagatiya/ner-ontonotes-v5-eng-v4 --- # (NER) distilbert-base-uncased : conll2012_ontonotesv5-english-v4 This **distilbert-base-uncased** NER model was finetuned on **conll2012_ontonotesv5-english-v4** dataset.
Check out [NER-System Repository](https://github.com/djagatiya/NER-System) for more information. ## Evaluation - Precision: 84.60 - Recall: 86.47 - F1-Score: 85.53 > check out this [eval.log](eval.log) file for evaluation metrics and classification report. ``` precision recall f1-score support CARDINAL 0.84 0.86 0.85 935 DATE 0.83 0.88 0.85 1602 EVENT 0.57 0.57 0.57 63 FAC 0.55 0.62 0.58 135 GPE 0.95 0.92 0.94 2240 LANGUAGE 0.82 0.64 0.72 22 LAW 0.50 0.50 0.50 40 LOC 0.55 0.72 0.62 179 MONEY 0.87 0.89 0.88 314 NORP 0.85 0.89 0.87 841 ORDINAL 0.81 0.88 0.84 195 ORG 0.81 0.83 0.82 1795 PERCENT 0.87 0.89 0.88 349 PERSON 0.93 0.93 0.93 1988 PRODUCT 0.55 0.55 0.55 76 QUANTITY 0.71 0.80 0.75 105 TIME 0.59 0.66 0.62 212 WORK_OF_ART 0.42 0.44 0.43 166 micro avg 0.85 0.86 0.86 11257 macro avg 0.72 0.75 0.73 11257 weighted avg 0.85 0.86 0.86 11257 ```