--- language: - en - da ---
**Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr This model does a good job if you need to do OCR on Danish documents. ### Example usage: ```python from doctr.io import DocumentFile from doctr.models import ocr_predictor, from_hub reco_arch = from_hub('diversen/doctr-torch-crnn_vgg16_bn-danish-v1') det_arch = "db_resnet50" model = ocr_predictor(det_arch=det_arch, reco_arch=reco_arch, pretrained=True) image = DocumentFile.from_images(['test.jpg']) result = model(image) result.show() output = result.export() text_str = "" for block in output["pages"][0]["blocks"]: block_txt = "" for line in block["lines"]: line_txt = "" for word in line["words"]: line_txt += word["value"] + " " block_txt += line_txt + "\n" text_str += block_txt + "\n" print(text_str) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "train-data", "val_path": "validation-data", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 32, "name": "doctr-torch-crnn_vgg16_bn-danish-v1", "epochs": 1, "batch_size": 64, "device": 0, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 16, "resume": "crnn_vgg16_bn_20240317-095746.pt", "vocab": "danish", "test_only": false, "freeze_backbone": false, "show_samples": false, "wb": false, "push_to_hub": true, "pretrained": true, "sched": "cosine", "amp": false, "find_lr": false, "early_stop": false, "early_stop_epochs": 5, "early_stop_delta": 0.01 }