---
base_model: FacebookAI/xlm-roberta-large
datasets:
- sentence-transformers/stsb
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:MatryoshkaLoss
- loss:CoSENTLoss
widget:
- source_sentence: A chef is preparing some food.
sentences:
- Five birds stand on the snow.
- A chef prepared a meal.
- There is no 'still' that is not relative to some other object.
- source_sentence: A woman is adding oil on fishes.
sentences:
- Large cruise ship floating on the water.
- It refers to the maximum f-stop (which is defined as the ratio of focal length
to effective aperture diameter).
- The woman is cutting potatoes.
- source_sentence: The player shoots the winning points.
sentences:
- Minimum wage laws hurt the least skilled, least productive the most.
- The basketball player is about to score points for his team.
- Three televisions, on on the floor, the other two on a box.
- source_sentence: Stars form in star-formation regions, which itself develop from
molecular clouds.
sentences:
- Although I believe Searle is mistaken, I don't think you have found the problem.
- It may be possible for a solar system like ours to exist outside of a galaxy.
- A blond-haired child performing on the trumpet in front of a house while his younger
brother watches.
- source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
consort, the King has always been the sovereign.
sentences:
- At first, I thought this is a bit of a tricky question.
- A man plays the guitar.
- There is a very good reason not to refer to the Queen's spouse as "King" - because
they aren't the King.
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.038123417655342585
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.030855987437062582
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.0742298464837288
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.016119009479880368
name: Spearman Euclidean
- type: pearson_dot
value: -0.053239384921975864
name: Pearson Dot
- type: spearman_dot
value: -0.03860610142560432
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.040766255073950965
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.028106086435826655
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.076050553000047
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.014573222092867504
name: Spearman Euclidean
- type: pearson_dot
value: -0.06110575151055097
name: Pearson Dot
- type: spearman_dot
value: -0.04818501881621991
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.044210895435818166
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.03253407490039325
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.0529355152933442
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.0338167301189937
name: Spearman Euclidean
- type: pearson_dot
value: 0.0887169006335579
name: Pearson Dot
- type: spearman_dot
value: 0.06886250477710897
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 128
type: sts-dev-128
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.05321620243744594
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.026531903856252148
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.06064347235216407
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.0270947004666721
name: Spearman Euclidean
- type: pearson_dot
value: 0.07199088437564892
name: Pearson Dot
- type: spearman_dot
value: 0.05552894816506978
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.046922199302745354
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.027530540631984835
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.04930495975336398
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.02287953412697089
name: Spearman Euclidean
- type: pearson_dot
value: 0.05851507366090909
name: Pearson Dot
- type: spearman_dot
value: 0.044913605667507114
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: 0.0005203243269627229
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.007914891421418472
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.008479099839233263
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.0002449834909380018
name: Spearman Euclidean
- type: pearson_dot
value: 0.015253799995136243
name: Pearson Dot
- type: spearman_dot
value: -0.002544651953260673
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.000985791968546407
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.009210170664121263
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.010968197464829785
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.0006366521814203481
name: Spearman Euclidean
- type: pearson_dot
value: 0.030903954394043587
name: Pearson Dot
- type: spearman_dot
value: 0.0214169911509498
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.008347426706014351
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.008133437696668973
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.01284332508912676
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.006207692348050752
name: Spearman Euclidean
- type: pearson_dot
value: -0.10411841010392278
name: Pearson Dot
- type: spearman_dot
value: -0.10441611480429308
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.007293947286825709
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.012461130559236479
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.013785631605643068
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.008355374230034162
name: Spearman Euclidean
- type: pearson_dot
value: -0.07790382803601184
name: Pearson Dot
- type: spearman_dot
value: -0.08277939304968172
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
- type: pearson_manhattan
value: -0.012731573411777072
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.003453137865023755
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.013710254571378023
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.0028389826642085166
name: Spearman Euclidean
- type: pearson_dot
value: -0.04900795414419644
name: Pearson Dot
- type: spearman_dot
value: -0.05520642056907742
name: Spearman Dot
- type: pearson_max
value: .nan
name: Pearson Max
- type: spearman_max
value: .nan
name: Spearman Max
---
# SentenceTransformer based on FacebookAI/xlm-roberta-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dipteshkanojia/xlm-roberta-large-sts-matryoshka")
# Run inference
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man plays the guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0381 |
| spearman_manhattan | -0.0309 |
| pearson_euclidean | -0.0742 |
| spearman_euclidean | -0.0161 |
| pearson_dot | -0.0532 |
| spearman_dot | -0.0386 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0408 |
| spearman_manhattan | -0.0281 |
| pearson_euclidean | -0.0761 |
| spearman_euclidean | -0.0146 |
| pearson_dot | -0.0611 |
| spearman_dot | -0.0482 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0442 |
| spearman_manhattan | -0.0325 |
| pearson_euclidean | -0.0529 |
| spearman_euclidean | -0.0338 |
| pearson_dot | 0.0887 |
| spearman_dot | 0.0689 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0532 |
| spearman_manhattan | -0.0265 |
| pearson_euclidean | -0.0606 |
| spearman_euclidean | -0.0271 |
| pearson_dot | 0.072 |
| spearman_dot | 0.0555 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0469 |
| spearman_manhattan | -0.0275 |
| pearson_euclidean | -0.0493 |
| spearman_euclidean | -0.0229 |
| pearson_dot | 0.0585 |
| spearman_dot | 0.0449 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | 0.0005 |
| spearman_manhattan | 0.0079 |
| pearson_euclidean | -0.0085 |
| spearman_euclidean | 0.0002 |
| pearson_dot | 0.0153 |
| spearman_dot | -0.0025 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.001 |
| spearman_manhattan | 0.0092 |
| pearson_euclidean | -0.011 |
| spearman_euclidean | 0.0006 |
| pearson_dot | 0.0309 |
| spearman_dot | 0.0214 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0083 |
| spearman_manhattan | 0.0081 |
| pearson_euclidean | -0.0128 |
| spearman_euclidean | 0.0062 |
| pearson_dot | -0.1041 |
| spearman_dot | -0.1044 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0073 |
| spearman_manhattan | 0.0125 |
| pearson_euclidean | -0.0138 |
| spearman_euclidean | 0.0084 |
| pearson_dot | -0.0779 |
| spearman_dot | -0.0828 |
| pearson_max | nan |
| spearman_max | nan |
#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
| pearson_manhattan | -0.0127 |
| spearman_manhattan | 0.0035 |
| pearson_euclidean | -0.0137 |
| spearman_euclidean | 0.0028 |
| pearson_dot | -0.049 |
| spearman_dot | -0.0552 |
| pearson_max | nan |
| spearman_max | nan |
## Training Details
### Training Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
A plane is taking off.
| An air plane is taking off.
| 1.0
|
| A man is playing a large flute.
| A man is playing a flute.
| 0.76
|
| A man is spreading shreded cheese on a pizza.
| A man is spreading shredded cheese on an uncooked pizza.
| 0.76
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing.
| A man wearing a hard hat is dancing.
| 1.0
|
| A young child is riding a horse.
| A child is riding a horse.
| 0.95
|
| A man is feeding a mouse to a snake.
| The man is feeding a mouse to the snake.
| 1.0
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `num_train_epochs`: 8
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters