File size: 6,768 Bytes
acbf4ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 018-microsoft-MiniLM-finetuned-yahoo-8000_2000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 018-microsoft-MiniLM-finetuned-yahoo-8000_2000

This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0511
- F1: 0.6984
- Accuracy: 0.701
- Precision: 0.7000
- Recall: 0.701
- System Ram Used: 4.0180
- System Ram Total: 83.4807
- Gpu Ram Allocated: 0.3995
- Gpu Ram Cached: 12.9297
- Gpu Ram Total: 39.5640
- Gpu Utilization: 35
- Disk Space Used: 26.2045
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 2.1461        | 0.5   | 125  | 1.8487          | 0.4711 | 0.5465   | 0.5181    | 0.5465 | 3.8798          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 24.5841         | 78.1898          |
| 1.6793        | 1.0   | 250  | 1.5280          | 0.5799 | 0.615    | 0.6207    | 0.615  | 3.8827          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 24.5842         | 78.1898          |
| 1.4163        | 1.5   | 375  | 1.3396          | 0.6508 | 0.6675   | 0.6691    | 0.6675 | 3.8831          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 24.5842         | 78.1898          |
| 1.2855        | 2.0   | 500  | 1.2413          | 0.6633 | 0.6745   | 0.6742    | 0.6745 | 3.8975          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 30              | 24.5843         | 78.1898          |
| 1.1364        | 2.5   | 625  | 1.1795          | 0.6658 | 0.6725   | 0.6758    | 0.6725 | 4.0967          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 31              | 25.4571         | 78.1898          |
| 1.0569        | 3.0   | 750  | 1.1167          | 0.6785 | 0.6845   | 0.6841    | 0.6845 | 4.0923          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 29              | 25.4573         | 78.1898          |
| 0.9596        | 3.5   | 875  | 1.0866          | 0.6883 | 0.698    | 0.6920    | 0.698  | 3.8765          | 83.4807          | 0.3997            | 12.9297        | 39.5640       | 29              | 25.4573         | 78.1898          |
| 0.917         | 4.0   | 1000 | 1.0703          | 0.6796 | 0.6875   | 0.6841    | 0.6875 | 3.8976          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 29              | 25.4573         | 78.1898          |
| 0.8512        | 4.5   | 1125 | 1.0629          | 0.6913 | 0.6915   | 0.6945    | 0.6915 | 4.0600          | 83.4807          | 0.3997            | 12.9297        | 39.5640       | 28              | 25.8306         | 78.1898          |
| 0.8121        | 5.0   | 1250 | 1.0576          | 0.6838 | 0.691    | 0.6905    | 0.691  | 4.0432          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 31              | 25.8306         | 78.1898          |
| 0.7733        | 5.5   | 1375 | 1.0598          | 0.6774 | 0.6805   | 0.6838    | 0.6805 | 3.8379          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 25.8307         | 78.1898          |
| 0.7431        | 6.0   | 1500 | 1.0376          | 0.6974 | 0.702    | 0.6976    | 0.702  | 3.8546          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 31              | 25.8307         | 78.1898          |
| 0.7065        | 6.5   | 1625 | 1.0457          | 0.6990 | 0.6995   | 0.7014    | 0.6995 | 4.0339          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 26.2040         | 78.1898          |
| 0.671         | 7.0   | 1750 | 1.0396          | 0.6956 | 0.698    | 0.6966    | 0.698  | 4.0384          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 26.2040         | 78.1898          |
| 0.6438        | 7.5   | 1875 | 1.0474          | 0.6887 | 0.6925   | 0.6907    | 0.6925 | 3.8274          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 26.2040         | 78.1898          |
| 0.6326        | 8.0   | 2000 | 1.0384          | 0.6972 | 0.698    | 0.6983    | 0.698  | 3.8402          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 34              | 26.2041         | 78.1898          |
| 0.6121        | 8.5   | 2125 | 1.0440          | 0.6963 | 0.698    | 0.6976    | 0.698  | 4.0162          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 29              | 26.2042         | 78.1898          |
| 0.5911        | 9.0   | 2250 | 1.0518          | 0.6995 | 0.701    | 0.7006    | 0.701  | 4.0338          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 28              | 26.2043         | 78.1898          |
| 0.592         | 9.5   | 2375 | 1.0490          | 0.7023 | 0.7035   | 0.7025    | 0.7035 | 3.8126          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 27              | 26.2043         | 78.1898          |
| 0.5586        | 10.0  | 2500 | 1.0511          | 0.6984 | 0.701    | 0.7000    | 0.701  | 3.8448          | 83.4807          | 0.3996            | 12.9297        | 39.5640       | 27              | 26.2043         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3