File size: 128,842 Bytes
2795186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
[[writing-tests]]
== Writing Tests

The following example provides a glimpse at the minimum requirements for writing a test in
JUnit Jupiter. Subsequent sections of this chapter will provide further details on all
available features.

[source,java,indent=0]
.A first test case
----
include::{testDir}/example/MyFirstJUnitJupiterTests.java[tags=user_guide]
----

[[writing-tests-annotations]]
=== Annotations

JUnit Jupiter supports the following annotations for configuring tests and extending the
framework.

Unless otherwise stated, all core annotations are located in the `{api-package}` package
in the `junit-jupiter-api` module.

[cols="20,80"]
|===
| Annotation               | Description

| `@Test`                  | Denotes that a method is a test method. Unlike JUnit 4's `@Test` annotation, this annotation does not declare any attributes, since test extensions in JUnit Jupiter operate based on their own dedicated annotations. Such methods are _inherited_ unless they are _overridden_.
| `@ParameterizedTest`     | Denotes that a method is a <<writing-tests-parameterized-tests, parameterized test>>. Such methods are _inherited_ unless they are _overridden_.
| `@RepeatedTest`          | Denotes that a method is a test template for a <<writing-tests-repeated-tests, repeated test>>. Such methods are _inherited_ unless they are _overridden_.
| `@TestFactory`           | Denotes that a method is a test factory for <<writing-tests-dynamic-tests, dynamic tests>>. Such methods are _inherited_ unless they are _overridden_.
| `@TestTemplate`          | Denotes that a method is a <<writing-tests-test-templates, template for test cases>> designed to be invoked multiple times depending on the number of invocation contexts returned by the registered <<extensions-test-templates, providers>>. Such methods are _inherited_ unless they are _overridden_.
| `@TestClassOrder`        | Used to configure the <<writing-tests-test-execution-order-classes, test class execution order>> for `@Nested` test classes in the annotated test class. Such annotations are _inherited_.
| `@TestMethodOrder`       | Used to configure the <<writing-tests-test-execution-order-methods, test method execution order>> for the annotated test class; similar to JUnit 4's `@FixMethodOrder`. Such annotations are _inherited_.
| `@TestInstance`          | Used to configure the <<writing-tests-test-instance-lifecycle, test instance lifecycle>> for the annotated test class. Such annotations are _inherited_.
| `@DisplayName`           | Declares a custom <<writing-tests-display-names,display name>> for the test class or test method. Such annotations are not _inherited_.
| `@DisplayNameGeneration` | Declares a custom <<writing-tests-display-name-generator,display name generator>> for the test class. Such annotations are _inherited_.
| `@BeforeEach`            | Denotes that the annotated method should be executed _before_ *each* `@Test`, `@RepeatedTest`, `@ParameterizedTest`, or `@TestFactory` method in the current class; analogous to JUnit 4's `@Before`. Such methods are _inherited_ – unless they are _overridden_ or _superseded_ (i.e., replaced based on signature only, irrespective of Java's visibility rules).
| `@AfterEach`             | Denotes that the annotated method should be executed _after_ *each* `@Test`, `@RepeatedTest`, `@ParameterizedTest`, or `@TestFactory` method in the current class; analogous to JUnit 4's `@After`. Such methods are _inherited_ – unless they are _overridden_ or _superseded_ (i.e., replaced based on signature only, irrespective of Java's visibility rules).
| `@BeforeAll`             | Denotes that the annotated method should be executed _before_ *all* `@Test`, `@RepeatedTest`, `@ParameterizedTest`, and `@TestFactory` methods in the current class; analogous to JUnit 4's `@BeforeClass`. Such methods are _inherited_ – unless they are _hidden_, _overridden_, or _superseded_, (i.e., replaced based on signature only, irrespective of Java's visibility rules) – and must be `static` unless the "per-class" <<writing-tests-test-instance-lifecycle, test instance lifecycle>> is used.
| `@AfterAll`              | Denotes that the annotated method should be executed _after_ *all* `@Test`, `@RepeatedTest`, `@ParameterizedTest`, and `@TestFactory` methods in the current class; analogous to JUnit 4's `@AfterClass`. Such methods are _inherited_ – unless they are _hidden_, _overridden_, or _superseded_, (i.e., replaced based on signature only, irrespective of Java's visibility rules) – and must be `static` unless the "per-class" <<writing-tests-test-instance-lifecycle, test instance lifecycle>> is used.
| `@Nested`                | Denotes that the annotated class is a non-static <<writing-tests-nested,nested test class>>. On Java 8 through Java 15, `@BeforeAll` and `@AfterAll` methods cannot be used directly in a `@Nested` test class unless the "per-class" <<writing-tests-test-instance-lifecycle, test instance lifecycle>> is used. Beginning with Java 16, `@BeforeAll` and `@AfterAll` methods can be declared as `static` in a `@Nested` test class with either test instance lifecycle mode. Such annotations are not _inherited_.
| `@Tag`                   | Used to declare <<writing-tests-tagging-and-filtering,tags for filtering tests>>, either at the class or method level; analogous to test groups in TestNG or Categories in JUnit 4. Such annotations are _inherited_ at the class level but not at the method level.
| `@Disabled`              | Used to <<writing-tests-disabling,disable>> a test class or test method; analogous to JUnit 4's `@Ignore`. Such annotations are not _inherited_.
| `@Timeout`               | Used to fail a test, test factory, test template, or lifecycle method if its execution exceeds a given duration. Such annotations are _inherited_.
| `@ExtendWith`            | Used to <<extensions-registration-declarative,register extensions declaratively>>. Such annotations are _inherited_.
| `@RegisterExtension`     | Used to <<extensions-registration-programmatic,register extensions programmatically>> via fields. Such fields are _inherited_ unless they are _shadowed_.
| `@TempDir`               | Used to supply a <<writing-tests-built-in-extensions-TempDirectory,temporary directory>> via field injection or parameter injection in a lifecycle method or test method; located in the `org.junit.jupiter.api.io` package.
|===

WARNING: Some annotations may currently be _experimental_. Consult the table in
<<api-evolution-experimental-apis>> for details.

[[writing-tests-meta-annotations]]
==== Meta-Annotations and Composed Annotations

JUnit Jupiter annotations can be used as _meta-annotations_. That means that you can
define your own _composed annotation_ that will automatically _inherit_ the semantics of
its meta-annotations.

For example, instead of copying and pasting `@Tag("fast")` throughout your code base (see
<<writing-tests-tagging-and-filtering>>), you can create a custom _composed annotation_
named `@Fast` as follows. `@Fast` can then be used as a drop-in replacement for
`@Tag("fast")`.

[source,java,indent=0]
----
include::{testDir}/example/Fast.java[tags=user_guide]
----

The following `@Test` method demonstrates usage of the `@Fast` annotation.

[source,java,indent=0]
----
@Fast
@Test
void myFastTest() {
    // ...
}
----

You can even take that one step further by introducing a custom `@FastTest` annotation
that can be used as a drop-in replacement for `@Tag("fast")` _and_ `@Test`.

[source,java,indent=0]
----
include::{testDir}/example/FastTest.java[tags=user_guide]
----

JUnit automatically recognizes the following as a `@Test` method that is tagged with
"fast".

[source,java,indent=0]
----
@FastTest
void myFastTest() {
    // ...
}
----

[[writing-tests-definitions]]
=== Definitions

.Platform Concepts
****
Container::
a node in the test tree that contains other containers or tests as its children (e.g. a _test class_).

Test::
a node in the test tree that verifies expected behavior when executed (e.g. a `@Test` method).
****

.Jupiter Concepts
****
Lifecycle Method::
any method that is directly annotated or meta-annotated with
`@BeforeAll`, `@AfterAll`, `@BeforeEach`, or `@AfterEach`.

Test Class::
any top-level class, `static` member class, or <<writing-tests-nested,
`@Nested` class>> that contains at least one _test method_, i.e. a _container_.
Test classes must not be `abstract` and must have a single constructor.

Test Method::
any instance method that is directly annotated or meta-annotated with
`@Test`, `@RepeatedTest`, `@ParameterizedTest`, `@TestFactory`, or `@TestTemplate`.
With the exception of `@Test`, these create a _container_ in the test tree that groups
_tests_ or, potentially (for `@TestFactory`), other _containers_.
****

[[writing-tests-classes-and-methods]]
=== Test Classes and Methods

Test methods and lifecycle methods may be declared locally within the current test class,
inherited from superclasses, or inherited from interfaces (see
<<writing-tests-test-interfaces-and-default-methods>>). In addition, test methods and
lifecycle methods must not be `abstract` and must not return a value (except `@TestFactory`
methods which are required to return a value).

[NOTE]
.Class and method visibility
====
Test classes, test methods, and lifecycle methods are not required to be `public`, but
they must _not_ be `private`.

It is generally recommended to omit the `public` modifier for test classes, test methods,
and lifecycle methods unless there is a technical reason for doing so – for example, when
a test class is extended by a test class in another package. Another technical reason for
making classes and methods `public` is to simplify testing on the module path when using
the Java Module System.
====

The following test class demonstrates the use of `@Test` methods and all supported
lifecycle methods. For further information on runtime semantics, see
<<writing-tests-test-execution-order>> and
<<extensions-execution-order-wrapping-behavior>>.

[source,java,indent=0]
.A standard test class
----
include::{testDir}/example/StandardTests.java[tags=user_guide]
----

[[writing-tests-display-names]]
=== Display Names

Test classes and test methods can declare custom display names via `@DisplayName` -- with
spaces, special characters, and even emojis -- that will be displayed in test reports and
by test runners and IDEs.

[source,java,indent=0]
----
include::{testDir}/example/DisplayNameDemo.java[tags=user_guide]
----

[[writing-tests-display-name-generator]]
==== Display Name Generators

JUnit Jupiter supports custom display name generators that can be configured via the
`@DisplayNameGeneration` annotation. Values provided via `@DisplayName` annotations
always take precedence over display names generated by a `DisplayNameGenerator`.

Generators can be created by implementing `DisplayNameGenerator`. Here are some default
ones available in Jupiter:

[cols="20,80"]
|===
| DisplayNameGenerator   | Behavior

| `Standard`             | Matches the standard display name generation behavior in place since JUnit Jupiter 5.0 was released.
| `Simple`               | Removes trailing parentheses for methods with no parameters.
| `ReplaceUnderscores`   | Replaces underscores with spaces.
| `IndicativeSentences`  | Generates complete sentences by concatenating the names of the test and the enclosing classes.
|===

Note that for `IndicativeSentences`, you can customize the separator and the
underlying generator by using `@IndicativeSentencesGeneration` as shown in the
following example.

[source,java,indent=0]
----
include::{testDir}/example/DisplayNameGeneratorDemo.java[tags=user_guide]
----

```
+-- DisplayNameGeneratorDemo [OK]
  +-- A year is not supported [OK]
  | +-- A negative value for year is not supported by the leap year computation. [OK]
  | | +-- For example, year -1 is not supported. [OK]
  | | '-- For example, year -4 is not supported. [OK]
  | '-- if it is zero() [OK]
  '-- A year is a leap year [OK]
    +-- A year is a leap year -> if it is divisible by 4 but not by 100. [OK]
    '-- A year is a leap year -> if it is one of the following years. [OK]
      +-- Year 2016 is a leap year. [OK]
      +-- Year 2020 is a leap year. [OK]
      '-- Year 2048 is a leap year. [OK]
```


[[writing-tests-display-name-generator-default]]
==== Setting the Default Display Name Generator

You can use the `junit.jupiter.displayname.generator.default`
<<running-tests-config-params, configuration parameter>> to specify the fully qualified
class name of the `DisplayNameGenerator` you would like to use by default. Just like for
display name generators configured via the `@DisplayNameGeneration` annotation, the
supplied class has to implement the `DisplayNameGenerator` interface. The default display
name generator will be used for all tests unless the `@DisplayNameGeneration` annotation
is present on an enclosing test class or test interface. Values provided via
`@DisplayName` annotations always take precedence over display names generated by a
`DisplayNameGenerator`.

For example, to use the `ReplaceUnderscores` display name generator by default, you should
set the configuration parameter to the corresponding fully qualified class name (e.g., in
`src/test/resources/junit-platform.properties`):

[source,properties,indent=0]
----
junit.jupiter.displayname.generator.default = \
    org.junit.jupiter.api.DisplayNameGenerator$ReplaceUnderscores
----

Similarly, you can specify the fully qualified name of any custom class that implements
`DisplayNameGenerator`.

[[writing-tests-display-name-generator-precedence-rules]]
In summary, the display name for a test class or method is determined according to the
following precedence rules:

1. value of the `@DisplayName` annotation, if present
2. by calling the `DisplayNameGenerator` specified in the `@DisplayNameGeneration`
   annotation, if present
3. by calling the default `DisplayNameGenerator` configured via the configuration
   parameter, if present
4. by calling `org.junit.jupiter.api.DisplayNameGenerator.Standard`

[[writing-tests-assertions]]
=== Assertions

JUnit Jupiter comes with many of the assertion methods that JUnit 4 has and adds a few
that lend themselves well to being used with Java 8 lambdas. All JUnit Jupiter assertions
are `static` methods in the `{Assertions}` class.

[source,java,indent=0]
----
include::{testDir}/example/AssertionsDemo.java[tags=user_guide]
----

[[writing-tests-assertions-preemptive-timeouts]]
[WARNING]
.Preemptive Timeouts with `assertTimeoutPreemptively()`
====
The various `assertTimeoutPreemptively()` methods in the `Assertions` class execute
the provided `executable` or `supplier` in a different thread than that of the calling
code. This behavior can lead to undesirable side effects if the code that is executed
within the `executable` or `supplier` relies on `java.lang.ThreadLocal` storage.

One common example of this is the transactional testing support in the Spring Framework.
Specifically, Spring's testing support binds transaction state to the current thread (via
a `ThreadLocal`) before a test method is invoked. Consequently, if an `executable` or
`supplier` provided to `assertTimeoutPreemptively()` invokes Spring-managed components
that participate in transactions, any actions taken by those components will not be rolled
back with the test-managed transaction. On the contrary, such actions will be committed to
the persistent store (e.g., relational database) even though the test-managed transaction
is rolled back.

Similar side effects may be encountered with other frameworks that rely on
`ThreadLocal` storage.
====

[[writing-tests-assertions-kotlin]]
==== Kotlin Assertion Support

JUnit Jupiter also comes with a few assertion methods that lend themselves well to being
used in https://kotlinlang.org/[Kotlin]. All JUnit Jupiter Kotlin assertions are top-level
functions in the `org.junit.jupiter.api` package.

[source,kotlin,indent=0]
----
include::{kotlinTestDir}/example/KotlinAssertionsDemo.kt[tags=user_guide]
----

[[writing-tests-assertions-third-party]]
==== Third-party Assertion Libraries

Even though the assertion facilities provided by JUnit Jupiter are sufficient for many
testing scenarios, there are times when more power and additional functionality such as
_matchers_ are desired or required. In such cases, the JUnit team recommends the use of
third-party assertion libraries such as {AssertJ}, {Hamcrest}, {Truth}, etc. Developers
are therefore free to use the assertion library of their choice.

For example, the combination of _matchers_ and a fluent API can be used to make
assertions more descriptive and readable. However, JUnit Jupiter's `{Assertions}` class
does not provide an
https://junit.org/junit4/javadoc/latest/org/junit/Assert.html#assertThat[`assertThat()`]
method like the one found in JUnit 4's `org.junit.Assert` class which accepts a Hamcrest
https://junit.org/junit4/javadoc/latest/org/hamcrest/Matcher.html[`Matcher`]. Instead,
developers are encouraged to use the built-in support for matchers provided by third-party
assertion libraries.

The following example demonstrates how to use the `assertThat()` support from Hamcrest in
a JUnit Jupiter test. As long as the Hamcrest library has been added to the classpath,
you can statically import methods such as `assertThat()`, `is()`, and `equalTo()` and
then use them in tests like in the `assertWithHamcrestMatcher()` method below.

[source,java,indent=0]
----
include::{testDir}/example/HamcrestAssertionsDemo.java[tags=user_guide]
----

Naturally, legacy tests based on the JUnit 4 programming model can continue using
`org.junit.Assert#assertThat`.

[[writing-tests-assumptions]]
=== Assumptions

JUnit Jupiter comes with a subset of the assumption methods that JUnit 4 provides and
adds a few that lend themselves well to being used with Java 8 lambda expressions and
method references. All JUnit Jupiter assumptions are static methods in the
`{Assumptions}` class.

[source,java,indent=0]
----
include::{testDir}/example/AssumptionsDemo.java[tags=user_guide]
----

NOTE: As of JUnit Jupiter 5.4, it is also possible to use methods from JUnit 4's
`org.junit.Assume` class for assumptions. Specifically, JUnit Jupiter supports JUnit 4's
`AssumptionViolatedException` to signal that a test should be aborted instead of marked
as a failure.

[[writing-tests-disabling]]
=== Disabling Tests

Entire test classes or individual test methods may be _disabled_ via the `{Disabled}`
annotation, via one of the annotations discussed in
<<writing-tests-conditional-execution>>, or via a custom <<extensions-conditions,
`ExecutionCondition`>>.

Here's a `@Disabled` test class.

[source,java,indent=0]
----
include::{testDir}/example/DisabledClassDemo.java[tags=user_guide]
----

And here's a test class that contains a `@Disabled` test method.

[source,java,indent=0]
----
include::{testDir}/example/DisabledTestsDemo.java[tags=user_guide]
----

[TIP]
====
`@Disabled` may be declared without providing a _reason_; however, the JUnit team
recommends that developers provide a short explanation for why a test class or test
method has been disabled. Consequently, the above examples both show the use of a reason
-- for example, `@Disabled("Disabled until bug #42 has been resolved")`. Some development
teams even require the presence of issue tracking numbers in the _reason_ for automated
traceability, etc.
====

[NOTE]
====
`@Disabled` is not `@Inherited`. Consequently, if you wish to disable a class whose
superclass is `@Disabled`, you must redeclare `@Disabled` on the subclass.
====


[[writing-tests-conditional-execution]]
=== Conditional Test Execution

The <<extensions-conditions, `ExecutionCondition`>> extension API in JUnit Jupiter allows
developers to either _enable_ or _disable_ a container or test based on certain
conditions _programmatically_. The simplest example of such a condition is the built-in
`{DisabledCondition}` which supports the `{Disabled}` annotation (see
<<writing-tests-disabling>>). In addition to `@Disabled`, JUnit Jupiter also supports
several other annotation-based conditions in the `org.junit.jupiter.api.condition`
package that allow developers to enable or disable containers and tests _declaratively_.
When multiple `ExecutionCondition` extensions are registered, a container or test is
disabled as soon as one of the conditions returns _disabled_. If you wish to provide
details about why they might be disabled, every annotation associated with these built-in
conditions has a `disabledReason` attribute available for that purpose.

See <<extensions-conditions, `ExecutionCondition`>> and the following sections for
details.

[TIP]
.Composed Annotations
====
Note that any of the _conditional_ annotations listed in the following sections may also
be used as a meta-annotation in order to create a custom _composed annotation_. For
example, the `@TestOnMac` annotation in the
<<writing-tests-conditional-execution-os-demo, @EnabledOnOs demo>> shows how you can
combine `@Test` and `@EnabledOnOs` in a single, reusable annotation.
====

[NOTE]
====
_Conditional_ annotations in JUnit Jupiter are not `@Inherited`. Consequently, if you wish
to apply the same semantics to subclasses, each conditional annotation must be redeclared
on each subclass.
====

[WARNING]
====
Unless otherwise stated, each of the _conditional_ annotations listed in the following
sections can only be declared once on a given test interface, test class, or test method.
If a conditional annotation is directly present, indirectly present, or meta-present
multiple times on a given element, only the first such annotation discovered by JUnit will
be used; any additional declarations will be silently ignored. Note, however, that each
conditional annotation may be used in conjunction with other conditional annotations in
the `org.junit.jupiter.api.condition` package.
====

[[writing-tests-conditional-execution-os]]
==== Operating System and Architecture Conditions

A container or test may be enabled or disabled on a particular operating system,
architecture, or combination of both via the `{EnabledOnOs}` and `{DisabledOnOs}`
annotations.

[[writing-tests-conditional-execution-os-demo]]
[source,java,indent=0]
.Conditional execution based on operating system
----
include::{testDir}/example/ConditionalTestExecutionDemo.java[tags=user_guide_os]
----

[[writing-tests-conditional-execution-architectures-demo]]
[source,java,indent=0]
.Conditional execution based on architecture
----
include::{testDir}/example/ConditionalTestExecutionDemo.java[tags=user_guide_architecture]
----

[[writing-tests-conditional-execution-jre]]
==== Java Runtime Environment Conditions

A container or test may be enabled or disabled on particular versions of the Java
Runtime Environment (JRE) via the `{EnabledOnJre}` and `{DisabledOnJre}` annotations
or on a particular range of versions of the JRE via the `{EnabledForJreRange}` and
`{DisabledForJreRange}` annotations. The range defaults to `{JRE}.JAVA_8` as the lower
border (`min`) and `{JRE}.OTHER` as the higher border (`max`), which allows usage of
half open ranges.

[source,java,indent=0]
----
include::{testDir}/example/ConditionalTestExecutionDemo.java[tags=user_guide_jre]
----

[[writing-tests-conditional-execution-native]]
==== Native Image Conditions

A container or test may be enabled or disabled within a
https://www.graalvm.org/reference-manual/native-image/[GraalVM native image] via the
`{EnabledInNativeImage}` and `{DisabledInNativeImage}` annotations. These annotations are
typically used when running tests within a native image using the Gradle and Maven
plug-ins from the GraalVM https://graalvm.github.io/native-build-tools/latest/[Native
Build Tools] project.

[source,java,indent=0]
----
include::{testDir}/example/ConditionalTestExecutionDemo.java[tags=user_guide_native]
----

[[writing-tests-conditional-execution-system-properties]]
==== System Property Conditions

A container or test may be enabled or disabled based on the value of the `named` JVM
system property via the `{EnabledIfSystemProperty}` and `{DisabledIfSystemProperty}`
annotations. The value supplied via the `matches` attribute will be interpreted as a
regular expression.

[source,java,indent=0]
----
include::{testDir}/example/ConditionalTestExecutionDemo.java[tags=user_guide_system_property]
----

[TIP]
====
As of JUnit Jupiter 5.6, `{EnabledIfSystemProperty}` and `{DisabledIfSystemProperty}` are
_repeatable annotations_. Consequently, these annotations may be declared multiple times
on a test interface, test class, or test method. Specifically, these annotations will be
found if they are directly present, indirectly present, or meta-present on a given element.
====

[[writing-tests-conditional-execution-environment-variables]]
==== Environment Variable Conditions

A container or test may be enabled or disabled based on the value of the `named`
environment variable from the underlying operating system via the
`{EnabledIfEnvironmentVariable}` and `{DisabledIfEnvironmentVariable}` annotations. The
value supplied via the `matches` attribute will be interpreted as a regular expression.

[source,java,indent=0]
----
include::{testDir}/example/ConditionalTestExecutionDemo.java[tags=user_guide_environment_variable]
----

[TIP]
====
As of JUnit Jupiter 5.6, `{EnabledIfEnvironmentVariable}` and
`{DisabledIfEnvironmentVariable}` are _repeatable annotations_. Consequently, these
annotations may be declared multiple times on a test interface, test class, or test
method. Specifically, these annotations will be found if they are directly present,
indirectly present, or meta-present on a given element.
====

[[writing-tests-conditional-execution-custom]]
==== Custom Conditions

As an alternative to implementing an <<extensions-conditions, `ExecutionCondition`>>, a
container or test may be enabled or disabled based on a _condition method_ configured via
the `{EnabledIf}` and `{DisabledIf}` annotations. A condition method must have a `boolean`
return type and may accept either no arguments or a single `ExtensionContext` argument.

The following test class demonstrates how to configure a local method named
`customCondition` via `@EnabledIf` and `@DisabledIf`.

[source,java,indent=0]
----
include::{testDir}/example/ConditionalTestExecutionDemo.java[tags=user_guide_custom]
----

Alternatively, the condition method can be located outside the test class. In this case,
it must be referenced by its _fully qualified name_ as demonstrated in the following
example.

[source,java,indent=0]
----
package example;

include::{testDir}/example/ExternalCustomConditionDemo.java[tags=user_guide_external_custom_condition]
----

[NOTE]
====
There are several cases where a condition method would need to be `static`:

- when `@EnabledIf` or `@DisabledIf` is used at class level
- when `@EnabledIf` or `@DisabledIf` is used on a `@ParameterizedTest` or a
  `@TestTemplate` method
- when the condition method is located in an external class

In any other case, you can use either static methods or instance methods as condition
methods.
====

[TIP]
====
It is often the case that you can use an existing static method in a utility class as a
custom condition.

For example, `java.awt.GraphicsEnvironment` provides a `public static boolean isHeadless()`
method that can be used to determine if the current environment does not support a
graphical display. Thus, if you have a test that depends on graphical support you can
disable it when such support is unavailable as follows.

[source,java,indent=0]
----
@DisabledIf(value = "java.awt.GraphicsEnvironment#isHeadless",
	disabledReason = "headless environment")
----
====

[[writing-tests-tagging-and-filtering]]
=== Tagging and Filtering

Test classes and methods can be tagged via the `@Tag` annotation. Those tags can later be
used to filter <<running-tests, test discovery and execution>>. Please refer to the
<<running-tests-tags>> section for more information about tag support in the JUnit
Platform.

[source,java,indent=0]
----
include::{testDir}/example/TaggingDemo.java[tags=user_guide]
----

TIP: See <<writing-tests-meta-annotations>> for examples demonstrating how to create
custom annotations for tags.

[[writing-tests-test-execution-order]]
=== Test Execution Order

By default, test classes and methods will be ordered using an algorithm that is
deterministic but intentionally nonobvious. This ensures that subsequent runs of a test
suite execute test classes and test methods in the same order, thereby allowing for
repeatable builds.

NOTE: See <<writing-tests-definitions>> for a definition of _test method_ and _test class_.

[[writing-tests-test-execution-order-methods]]
==== Method Order

Although true _unit tests_ typically should not rely on the order in which they are
executed, there are times when it is necessary to enforce a specific test method execution
order -- for example, when writing _integration tests_ or _functional tests_ where the
sequence of the tests is important, especially in conjunction with
`@TestInstance(Lifecycle.PER_CLASS)`.

To control the order in which test methods are executed, annotate your test class or test
interface with `{TestMethodOrder}` and specify the desired `{MethodOrderer}`
implementation. You can implement your own custom `MethodOrderer` or use one of the
following built-in `MethodOrderer` implementations.

* `{MethodOrderer_DisplayName}`: sorts test methods _alphanumerically_ based on their
  display names (see <<writing-tests-display-name-generator-precedence-rules, display name
  generation precedence rules>>)
* `{MethodOrderer_MethodName}`: sorts test methods _alphanumerically_ based on their names
  and formal parameter lists
* `{MethodOrderer_OrderAnnotation}`: sorts test methods _numerically_ based on values
  specified via the `{Order}` annotation
* `{MethodOrderer_Random}`: orders test methods _pseudo-randomly_ and supports
  configuration of a custom _seed_
* `{MethodOrderer_Alphanumeric}`: sorts test methods _alphanumerically_ based on their
  names and formal parameter lists; **deprecated in favor of `{MethodOrderer_MethodName}`,
  to be removed in 6.0**

NOTE: See also: <<extensions-execution-order-wrapping-behavior>>

The following example demonstrates how to guarantee that test methods are executed in the
order specified via the `@Order` annotation.

[source,java,indent=0]
----
include::{testDir}/example/OrderedTestsDemo.java[tags=user_guide]
----

[[writing-tests-test-execution-order-methods-default]]
===== Setting the Default Method Orderer

You can use the `junit.jupiter.testmethod.order.default` <<running-tests-config-params,
configuration parameter>> to specify the fully qualified class name of the
`{MethodOrderer}` you would like to use by default. Just like for the orderer configured
via the `{TestMethodOrder}` annotation, the supplied class has to implement the
`MethodOrderer` interface. The default orderer will be used for all tests unless the
`@TestMethodOrder` annotation is present on an enclosing test class or test interface.

For example, to use the `{MethodOrderer_OrderAnnotation}` method orderer by default, you
should set the configuration parameter to the corresponding fully qualified class name
(e.g., in `src/test/resources/junit-platform.properties`):

[source,properties,indent=0]
----
junit.jupiter.testmethod.order.default = \
    org.junit.jupiter.api.MethodOrderer$OrderAnnotation
----

Similarly, you can specify the fully qualified name of any custom class that implements
`MethodOrderer`.

[[writing-tests-test-execution-order-classes]]
==== Class Order

Although test classes typically should not rely on the order in which they are executed,
there are times when it is desirable to enforce a specific test class execution order. You
may wish to execute test classes in a random order to ensure there are no accidental
dependencies between test classes, or you may wish to order test classes to optimize build
time as outlined in the following scenarios.

* Run previously failing tests and faster tests first: "fail fast" mode
* With parallel execution enabled, schedule longer tests first: "shortest test plan
  execution duration" mode
* Various other use cases

To configure test class execution order _globally_ for the entire test suite, use the
`junit.jupiter.testclass.order.default` <<running-tests-config-params, configuration
parameter>> to specify the fully qualified class name of the `{ClassOrderer}` you would
like to use. The supplied class must implement the `ClassOrderer` interface.

You can implement your own custom `ClassOrderer` or use one of the following built-in
`ClassOrderer` implementations.

* `{ClassOrderer_ClassName}`: sorts test classes _alphanumerically_ based on their fully
  qualified class names
* `{ClassOrderer_DisplayName}`: sorts test classes _alphanumerically_ based on their
  display names (see <<writing-tests-display-name-generator-precedence-rules, display name
  generation precedence rules>>)
* `{ClassOrderer_OrderAnnotation}`: sorts test classes _numerically_ based on values
  specified via the `{Order}` annotation
* `{ClassOrderer_Random}`: orders test classes _pseudo-randomly_ and supports
  configuration of a custom _seed_

For example, for the `@Order` annotation to be honored on _test classes_, you should
configure the `{ClassOrderer_OrderAnnotation}` class orderer using the configuration
parameter with the corresponding fully qualified class name (e.g., in
`src/test/resources/junit-platform.properties`):

[source,properties,indent=0]
----
junit.jupiter.testclass.order.default = \
    org.junit.jupiter.api.ClassOrderer$OrderAnnotation
----

The configured `ClassOrderer` will be applied to all top-level test classes (including
`static` nested test classes) and `@Nested` test classes.

NOTE: Top-level test classes will be ordered relative to each other; whereas, `@Nested`
test classes will be ordered relative to other `@Nested` test classes sharing the same
_enclosing class_.

To configure test class execution order _locally_ for `@Nested` test classes, declare the
`{TestClassOrder}` annotation on the enclosing class for the `@Nested` test classes you
want to order, and supply a class reference to the `ClassOrderer` implementation you would
like to use directly in the `@TestClassOrder` annotation. The configured `ClassOrderer`
will be applied recursively to `@Nested` test classes and their `@Nested` test classes.
Note that a local `@TestClassOrder` declaration always overrides an inherited
`@TestClassOrder` declaration or a `ClassOrderer` configured globally via the
`junit.jupiter.testclass.order.default` configuration parameter.

The following example demonstrates how to guarantee that `@Nested` test classes are
executed in the order specified via the `@Order` annotation.

[source,java,indent=0]
----
include::{testDir}/example/OrderedNestedTestClassesDemo.java[tags=user_guide]
----

[[writing-tests-test-instance-lifecycle]]
=== Test Instance Lifecycle

In order to allow individual test methods to be executed in isolation and to avoid
unexpected side effects due to mutable test instance state, JUnit creates a new instance
of each test class before executing each _test method_ (see
<<writing-tests-definitions>>). This "per-method" test instance lifecycle is the default
behavior in JUnit Jupiter and is analogous to all previous versions of JUnit.

NOTE: Please note that the test class will still be instantiated if a given _test method_
is _disabled_ via a <<writing-tests-conditional-execution,condition>> (e.g., `@Disabled`,
`@DisabledOnOs`, etc.) even when the "per-method" test instance lifecycle mode is active.

If you would prefer that JUnit Jupiter execute all test methods on the same test
instance, annotate your test class with `@TestInstance(Lifecycle.PER_CLASS)`. When using
this mode, a new test instance will be created once per test class. Thus, if your test
methods rely on state stored in instance variables, you may need to reset that state in
`@BeforeEach` or `@AfterEach` methods.

The "per-class" mode has some additional benefits over the default "per-method" mode.
Specifically, with the "per-class" mode it becomes possible to declare `@BeforeAll` and
`@AfterAll` on non-static methods as well as on interface `default` methods. The
"per-class" mode therefore also makes it possible to use `@BeforeAll` and `@AfterAll`
methods in `@Nested` test classes.

NOTE: Beginning with Java 16, `@BeforeAll` and `@AfterAll` methods can be declared as
`static` in `@Nested` test classes.

If you are authoring tests using the Kotlin programming language, you may also find it
easier to implement non-static `@BeforeAll` and `@AfterAll` lifecycle methods as well as
`@MethodSource` factory methods by switching to the "per-class" test instance lifecycle
mode.

[[writing-tests-test-instance-lifecycle-changing-default]]
==== Changing the Default Test Instance Lifecycle

If a test class or test interface is not annotated with `@TestInstance`, JUnit Jupiter
will use a _default_ lifecycle mode. The standard _default_ mode is `PER_METHOD`;
however, it is possible to change the _default_ for the execution of an entire test plan.
To change the default test instance lifecycle mode, set the
`junit.jupiter.testinstance.lifecycle.default` _configuration parameter_ to the name of
an enum constant defined in `TestInstance.Lifecycle`, ignoring case. This can be supplied
as a JVM system property, as a _configuration parameter_ in the
`LauncherDiscoveryRequest` that is passed to the `Launcher`, or via the JUnit Platform
configuration file (see <<running-tests-config-params>> for details).

For example, to set the default test instance lifecycle mode to `Lifecycle.PER_CLASS`,
you can start your JVM with the following system property.

`-Djunit.jupiter.testinstance.lifecycle.default=per_class`

Note, however, that setting the default test instance lifecycle mode via the JUnit
Platform configuration file is a more robust solution since the configuration file can be
checked into a version control system along with your project and can therefore be used
within IDEs and your build software.

To set the default test instance lifecycle mode to `Lifecycle.PER_CLASS` via the JUnit
Platform configuration file, create a file named `junit-platform.properties` in the root
of the class path (e.g., `src/test/resources`) with the following content.

`junit.jupiter.testinstance.lifecycle.default = per_class`

WARNING: Changing the _default_ test instance lifecycle mode can lead to unpredictable
results and fragile builds if not applied consistently. For example, if the build
configures "per-class" semantics as the default but tests in the IDE are executed using
"per-method" semantics, that can make it difficult to debug errors that occur on the
build server. It is therefore recommended to change the default in the JUnit Platform
configuration file instead of via a JVM system property.

[[writing-tests-nested]]
=== Nested Tests

`@Nested` tests give the test writer more capabilities to express the relationship among
several groups of tests. Such nested tests make use of Java's nested classes and
facilitate hierarchical thinking about the test structure. Here's an elaborate example,
both as source code and as a screenshot of the execution within an IDE.

[source,java,indent=0]
.Nested test suite for testing a stack
----
include::{testDir}/example/TestingAStackDemo.java[tags=user_guide]
----

When executing this example in an IDE, the test execution tree in the GUI will look
similar to the following image.

image::writing-tests_nested_test_ide.png[caption='',title='Executing a nested test in an IDE']

In this example, preconditions from outer tests are used in inner tests by defining
hierarchical lifecycle methods for the setup code. For example, `createNewStack()` is a
`@BeforeEach` lifecycle method that is used in the test class in which it is defined and
in all levels in the nesting tree below the class in which it is defined.

The fact that setup code from outer tests is run before inner tests are executed gives you
the ability to run all tests independently. You can even run inner tests alone without
running the outer tests, because the setup code from the outer tests is always executed.

NOTE: _Only non-static nested classes_ (i.e. _inner classes_) can serve as `@Nested` test
classes. Nesting can be arbitrarily deep, and those inner classes are subject to full
lifecycle support with one exception: `@BeforeAll` and `@AfterAll` methods do not work _by
default_. The reason is that Java does not allow `static` members in inner classes prior
to Java 16. However, this restriction can be circumvented by annotating a `@Nested` test
class with `@TestInstance(Lifecycle.PER_CLASS)` (see
<<writing-tests-test-instance-lifecycle>>). If you are using Java 16 or higher,
`@BeforeAll` and `@AfterAll` methods can be declared as `static` in `@Nested` test
classes, and this restriction no longer applies.

[[writing-tests-dependency-injection]]
=== Dependency Injection for Constructors and Methods

In all prior JUnit versions, test constructors or methods were not allowed to have
parameters (at least not with the standard `Runner` implementations). As one of the major
changes in JUnit Jupiter, both test constructors and methods are now permitted to have
parameters. This allows for greater flexibility and enables _Dependency Injection_ for
constructors and methods.

`{ParameterResolver}` defines the API for test extensions that wish to _dynamically_
resolve parameters at runtime. If a _test class_ constructor, a _test method_, or a
_lifecycle method_ (see <<writing-tests-definitions>>) accepts a parameter, the parameter
must be resolved at runtime by a registered `ParameterResolver`.

There are currently three built-in resolvers that are registered automatically.

* `{TestInfoParameterResolver}`: if a constructor or method parameter is of type
  `{TestInfo}`, the `TestInfoParameterResolver` will supply an instance of `TestInfo`
  corresponding to the current container or test as the value for the parameter. The
  `TestInfo` can then be used to retrieve information about the current container or test
  such as the display name, the test class, the test method, and associated tags. The
  display name is either a technical name, such as the name of the test class or test
  method, or a custom name configured via `@DisplayName`.
+
`{TestInfo}` acts as a drop-in replacement for the `TestName` rule from JUnit 4. The
following demonstrates how to have `TestInfo` injected into a test constructor,
`@BeforeEach` method, and `@Test` method.

[source,java,indent=0]
----
include::{testDir}/example/TestInfoDemo.java[tags=user_guide]
----

* `{RepetitionExtension}`: if a method parameter in a `@RepeatedTest`, `@BeforeEach`, or
  `@AfterEach` method is of type `{RepetitionInfo}`, the `RepetitionExtension` will supply
  an instance of `RepetitionInfo`. `RepetitionInfo` can then be used to retrieve
  information about the current repetition, the total number of repetitions, the number of
  repetitions that have failed, and the failure threshold for the corresponding
  `@RepeatedTest`. Note, however, that `RepetitionExtension` is not registered outside the
  context of a `@RepeatedTest`. See <<writing-tests-repeated-tests-examples>>.

* `{TestReporterParameterResolver}`: if a constructor or method parameter is of type
  `{TestReporter}`, the `TestReporterParameterResolver` will supply an instance of
  `TestReporter`. The `TestReporter` can be used to publish additional data about the
  current test run. The data can be consumed via the `reportingEntryPublished()` method in
  a `{TestExecutionListener}`, allowing it to be viewed in IDEs or included in reports.
+
In JUnit Jupiter you should use `TestReporter` where you used to print information to
`stdout` or `stderr` in JUnit 4. Using `@RunWith(JUnitPlatform.class)` will output all
reported entries to `stdout`. In addition, some IDEs print report entries to `stdout` or
display them in the user interface for test results.

[source,java,indent=0]
----
include::{testDir}/example/TestReporterDemo.java[tags=user_guide]
----

NOTE: Other parameter resolvers must be explicitly enabled by registering appropriate
<<extensions,extensions>> via `@ExtendWith`.

Check out the `{RandomParametersExtension}` for an example of a custom
`{ParameterResolver}`. While not intended to be production-ready, it demonstrates the
simplicity and expressiveness of both the extension model and the parameter resolution
process. `MyRandomParametersTest` demonstrates how to inject random values into `@Test`
methods.

[source,java,indent=0]
----
@ExtendWith(RandomParametersExtension.class)
class MyRandomParametersTest {

	@Test
	void injectsInteger(@Random int i, @Random int j) {
		assertNotEquals(i, j);
	}

	@Test
	void injectsDouble(@Random double d) {
		assertEquals(0.0, d, 1.0);
	}

}
----

For real-world use cases, check out the source code for the `{MockitoExtension}` and the
`{SpringExtension}`.

When the type of the parameter to inject is the only condition for your
`{ParameterResolver}`, you can use the generic `{TypeBasedParameterResolver}` base class.
The `supportsParameters` method is implemented behind the scenes and supports
parameterized types.

[[writing-tests-test-interfaces-and-default-methods]]
=== Test Interfaces and Default Methods

JUnit Jupiter allows `@Test`, `@RepeatedTest`, `@ParameterizedTest`, `@TestFactory`,
`@TestTemplate`, `@BeforeEach`, and `@AfterEach` to be declared on interface `default`
methods. `@BeforeAll` and `@AfterAll` can either be declared on `static` methods in a
test interface or on interface `default` methods _if_ the test interface or test class is
annotated with `@TestInstance(Lifecycle.PER_CLASS)` (see
<<writing-tests-test-instance-lifecycle>>). Here are some examples.

[source,java]
----
include::{testDir}/example/testinterface/TestLifecycleLogger.java[tags=user_guide]
----

[source,java]
----
include::{testDir}/example/testinterface/TestInterfaceDynamicTestsDemo.java[tags=user_guide]
----

`@ExtendWith` and `@Tag` can be declared on a test interface so that classes that
implement the interface automatically inherit its tags and extensions. See
<<extensions-lifecycle-callbacks-before-after-execution>> for the source code of the
<<extensions-lifecycle-callbacks-timing-extension, TimingExtension>>.

[source,java]
----
include::{testDir}/example/testinterface/TimeExecutionLogger.java[tags=user_guide]
----

In your test class you can then implement these test interfaces to have them applied.

[source,java]
----
include::{testDir}/example/testinterface/TestInterfaceDemo.java[tags=user_guide]
----

Running the `TestInterfaceDemo` results in output similar to the following:

....
INFO  example.TestLifecycleLogger - Before all tests
INFO  example.TestLifecycleLogger - About to execute [dynamicTestsForPalindromes()]
INFO  example.TimingExtension - Method [dynamicTestsForPalindromes] took 19 ms.
INFO  example.TestLifecycleLogger - Finished executing [dynamicTestsForPalindromes()]
INFO  example.TestLifecycleLogger - About to execute [isEqualValue()]
INFO  example.TimingExtension - Method [isEqualValue] took 1 ms.
INFO  example.TestLifecycleLogger - Finished executing [isEqualValue()]
INFO  example.TestLifecycleLogger - After all tests
....

Another possible application of this feature is to write tests for interface contracts.
For example, you can write tests for how implementations of `Object.equals` or
`Comparable.compareTo` should behave as follows.

[source,java]
----
include::{testDir}/example/defaultmethods/Testable.java[tags=user_guide]
----

[source,java]
----
include::{testDir}/example/defaultmethods/EqualsContract.java[tags=user_guide]
----

[source,java]
----
include::{testDir}/example/defaultmethods/ComparableContract.java[tags=user_guide]
----

In your test class you can then implement both contract interfaces thereby inheriting the
corresponding tests. Of course you'll have to implement the abstract methods.

[source,java]
----
include::{testDir}/example/defaultmethods/StringTests.java[tags=user_guide]
----

NOTE: The above tests are merely meant as examples and therefore not complete.


[[writing-tests-repeated-tests]]
=== Repeated Tests

JUnit Jupiter provides the ability to repeat a test a specified number of times by
annotating a method with `@RepeatedTest` and specifying the total number of repetitions
desired. Each invocation of a repeated test behaves like the execution of a regular
`@Test` method with full support for the same lifecycle callbacks and extensions.

The following example demonstrates how to declare a test named `repeatedTest()` that
will be automatically repeated 10 times.

[source,java]
----
@RepeatedTest(10)
void repeatedTest() {
	// ...
}
----

Since JUnit Jupiter 5.10, `@RepeatedTest` can be configured with a failure threshold which
signifies the number of failures after which remaining repetitions will be automatically
skipped. Set the `failureThreshold` attribute to a positive number less than the total
number of repetitions in order to skip the invocations of remaining repetitions after the
specified number of failures has been encountered.

For example, if you are using `@RepeatedTest` to repeatedly invoke a test that you suspect
to be _flaky_, a single failure is sufficient to demonstrate that the test is flaky, and
there is no need to invoke the remaining repetitions. To support that specific use case,
set `failureThreshold = 1`. You can alternatively set the threshold to a number greater
than 1 depending on your use case.

By default, the `failureThreshold` attribute is set to `Integer.MAX_VALUE`, signaling that
no failure threshold will be applied, which effectively means that the specified number of
repetitions will be invoked regardless of whether any repetitions fail.

WARNING: If the repetitions of a `@RepeatedTest` method are executed in parallel, no
guarantees can be made regarding the failure threshold. It is therefore recommended that a
`@RepeatedTest` method be annotated with `@Execution(SAME_THREAD)` when parallel execution
is configured. See <<writing-tests-parallel-execution>> for further details.

In addition to specifying the number of repetitions and failure threshold, a custom
display name can be configured for each repetition via the `name` attribute of the
`@RepeatedTest` annotation. Furthermore, the display name can be a pattern composed of a
combination of static text and dynamic placeholders. The following placeholders are
currently supported.

- `{displayName}`: display name of the `@RepeatedTest` method
- `{currentRepetition}`: the current repetition count
- `{totalRepetitions}`: the total number of repetitions

The default display name for a given repetition is generated based on the following
pattern: `"repetition {currentRepetition} of {totalRepetitions}"`. Thus, the display
names for individual repetitions of the previous `repeatedTest()` example would be:
`repetition 1 of 10`, `repetition 2 of 10`, etc. If you would like the display name of
the `@RepeatedTest` method included in the name of each repetition, you can define your
own custom pattern or use the predefined `RepeatedTest.LONG_DISPLAY_NAME` pattern. The
latter is equal to `"{displayName} :: repetition {currentRepetition} of
{totalRepetitions}"` which results in display names for individual repetitions like
`repeatedTest() :: repetition 1 of 10`, `repeatedTest() :: repetition 2 of 10`, etc.

In order to retrieve information about the current repetition, the total number of
repetitions, the number of repetitions that have failed, and the failure threshold, a
developer can choose to have an instance of `{RepetitionInfo}` injected into a
`@RepeatedTest`, `@BeforeEach`, or `@AfterEach` method.

[[writing-tests-repeated-tests-examples]]
==== Repeated Test Examples

The `RepeatedTestsDemo` class at the end of this section demonstrates several examples of
repeated tests.

The `repeatedTest()` method is identical to the example from the previous section; whereas,
`repeatedTestWithRepetitionInfo()` demonstrates how to have an instance of
`RepetitionInfo` injected into a test to access the total number of repetitions for the
current repeated test.

`repeatedTestWithFailureThreshold()` demonstrates how to set a failure threshold and
simulates an unexpected failure for every second repetition. The resulting behavior can be
viewed in the `ConsoleLauncher` output at the end of this section.

The next two methods demonstrate how to include a custom `@DisplayName` for the
`@RepeatedTest` method in the display name of each repetition. `customDisplayName()`
combines a custom display name with a custom pattern and then uses `TestInfo` to verify
the format of the generated display name. `Repeat!` is the `{displayName}` which comes
from the `@DisplayName` declaration, and `1/1` comes from
`{currentRepetition}/{totalRepetitions}`. In contrast,
`customDisplayNameWithLongPattern()` uses the aforementioned predefined
`RepeatedTest.LONG_DISPLAY_NAME` pattern.

`repeatedTestInGerman()` demonstrates the ability to translate display names of repeated
tests into foreign languages -- in this case German, resulting in names for individual
repetitions such as: `Wiederholung 1 von 5`, `Wiederholung 2 von 5`, etc.

Since the `beforeEach()` method is annotated with `@BeforeEach` it will get executed
before each repetition of each repeated test. By having the `TestInfo` and
`RepetitionInfo` injected into the method, we see that it's possible to obtain
information about the currently executing repeated test. Executing `RepeatedTestsDemo`
with the `INFO` log level enabled results in the following output.

....
INFO: About to execute repetition 1 of 10 for repeatedTest
INFO: About to execute repetition 2 of 10 for repeatedTest
INFO: About to execute repetition 3 of 10 for repeatedTest
INFO: About to execute repetition 4 of 10 for repeatedTest
INFO: About to execute repetition 5 of 10 for repeatedTest
INFO: About to execute repetition 6 of 10 for repeatedTest
INFO: About to execute repetition 7 of 10 for repeatedTest
INFO: About to execute repetition 8 of 10 for repeatedTest
INFO: About to execute repetition 9 of 10 for repeatedTest
INFO: About to execute repetition 10 of 10 for repeatedTest
INFO: About to execute repetition 1 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 2 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 3 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 4 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 5 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 1 of 8 for repeatedTestWithFailureThreshold
INFO: About to execute repetition 2 of 8 for repeatedTestWithFailureThreshold
INFO: About to execute repetition 3 of 8 for repeatedTestWithFailureThreshold
INFO: About to execute repetition 4 of 8 for repeatedTestWithFailureThreshold
INFO: About to execute repetition 1 of 1 for customDisplayName
INFO: About to execute repetition 1 of 1 for customDisplayNameWithLongPattern
INFO: About to execute repetition 1 of 5 for repeatedTestInGerman
INFO: About to execute repetition 2 of 5 for repeatedTestInGerman
INFO: About to execute repetition 3 of 5 for repeatedTestInGerman
INFO: About to execute repetition 4 of 5 for repeatedTestInGerman
INFO: About to execute repetition 5 of 5 for repeatedTestInGerman
....

[source,java]
----
include::{testDir}/example/RepeatedTestsDemo.java[tags=user_guide]
----

When using the `ConsoleLauncher` with the unicode theme enabled, execution of
`RepeatedTestsDemo` results in the following output to the console.

....
├─ RepeatedTestsDemo ✔
│  ├─ repeatedTest() ✔
│  │  ├─ repetition 1 of 10 ✔
│  │  ├─ repetition 2 of 10 ✔
│  │  ├─ repetition 3 of 10 ✔
│  │  ├─ repetition 4 of 10 ✔
│  │  ├─ repetition 5 of 10 ✔
│  │  ├─ repetition 6 of 10 ✔
│  │  ├─ repetition 7 of 10 ✔
│  │  ├─ repetition 8 of 10 ✔
│  │  ├─ repetition 9 of 10 ✔
│  │  └─ repetition 10 of 10 ✔
│  ├─ repeatedTestWithRepetitionInfo(RepetitionInfo) ✔
│  │  ├─ repetition 1 of 5 ✔
│  │  ├─ repetition 2 of 5 ✔
│  │  ├─ repetition 3 of 5 ✔
│  │  ├─ repetition 4 of 5 ✔
│  │  └─ repetition 5 of 5 ✔
│  ├─ repeatedTestWithFailureThreshold(RepetitionInfo) ✔
│  │  ├─ repetition 1 of 8 ✔
│  │  ├─ repetition 2 of 8 ✘ Boom!
│  │  ├─ repetition 3 of 8 ✔
│  │  ├─ repetition 4 of 8 ✘ Boom!
│  │  ├─ repetition 5 of 8 ↷ Failure threshold [2] exceeded
│  │  ├─ repetition 6 of 8 ↷ Failure threshold [2] exceeded
│  │  ├─ repetition 7 of 8 ↷ Failure threshold [2] exceeded
│  │  └─ repetition 8 of 8 ↷ Failure threshold [2] exceeded
│  ├─ Repeat! ✔
│  │  └─ Repeat! 1/1 ✔
│  ├─ Details... ✔
│  │  └─ Details... :: repetition 1 of 1 ✔
│  └─ repeatedTestInGerman() ✔
│     ├─ Wiederholung 1 von 5 ✔
│     ├─ Wiederholung 2 von 5 ✔
│     ├─ Wiederholung 3 von 5 ✔
│     ├─ Wiederholung 4 von 5 ✔
│     └─ Wiederholung 5 von 5 ✔
....


[[writing-tests-parameterized-tests]]
=== Parameterized Tests

Parameterized tests make it possible to run a test multiple times with different
arguments. They are declared just like regular `@Test` methods but use the
`{ParameterizedTest}` annotation instead. In addition, you must declare at least one
_source_ that will provide the arguments for each invocation and then _consume_ the
arguments in the test method.

The following example demonstrates a parameterized test that uses the `@ValueSource`
annotation to specify a `String` array as the source of arguments.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=first_example]
----

When executing the above parameterized test method, each invocation will be reported
separately. For instance, the `ConsoleLauncher` will print output similar to the
following.

....
palindromes(String) ✔
├─ [1] candidate=racecar ✔
├─ [2] candidate=radar ✔
└─ [3] candidate=able was I ere I saw elba ✔
....

[[writing-tests-parameterized-tests-setup]]
==== Required Setup

In order to use parameterized tests you need to add a dependency on the
`junit-jupiter-params` artifact. Please refer to <<dependency-metadata>> for details.

[[writing-tests-parameterized-tests-consuming-arguments]]
==== Consuming Arguments

Parameterized test methods typically _consume_ arguments directly from the configured
source (see <<writing-tests-parameterized-tests-sources>>) following a one-to-one
correlation between argument source index and method parameter index (see examples in
<<writing-tests-parameterized-tests-sources-CsvSource>>). However, a parameterized test
method may also choose to _aggregate_ arguments from the source into a single object
passed to the method (see <<writing-tests-parameterized-tests-argument-aggregation>>).
Additional arguments may also be provided by a `ParameterResolver` (e.g., to obtain an
instance of `TestInfo`, `TestReporter`, etc.). Specifically, a parameterized test method
must declare formal parameters according to the following rules.

* Zero or more _indexed arguments_ must be declared first.
* Zero or more _aggregators_ must be declared next.
* Zero or more arguments supplied by a `ParameterResolver` must be declared last.

In this context, an _indexed argument_ is an argument for a given index in the
`Arguments` provided by an `ArgumentsProvider` that is passed as an argument to the
parameterized method at the same index in the method's formal parameter list. An
_aggregator_ is any parameter of type `ArgumentsAccessor` or any parameter annotated with
`@AggregateWith`.

[NOTE]
.AutoCloseable arguments
====
Arguments that implement `java.lang.AutoCloseable` (or `java.io.Closeable` which extends
`java.lang.AutoCloseable`) will be automatically closed after `@AfterEach` methods and
`AfterEachCallback` extensions have been called for the current parameterized test
invocation.

To prevent this from happening, set the `autoCloseArguments` attribute in
`@ParameterizedTest` to `false`. Specifically, if an argument that implements
`AutoCloseable` is reused for multiple invocations of the same parameterized test method,
you must annotate the method with `@ParameterizedTest(autoCloseArguments = false)` to
ensure that the argument is not closed between invocations.
====

[[writing-tests-parameterized-tests-sources]]
==== Sources of Arguments

Out of the box, JUnit Jupiter provides quite a few _source_ annotations. Each of the
following subsections provides a brief overview and an example for each of them. Please
refer to the Javadoc in the `{params-provider-package}` package for additional
information.

[[writing-tests-parameterized-tests-sources-ValueSource]]
===== @ValueSource

`@ValueSource` is one of the simplest possible sources. It lets you specify a single
array of literal values and can only be used for providing a single argument per
parameterized test invocation.

The following types of literal values are supported by `@ValueSource`.

- `short`
- `byte`
- `int`
- `long`
- `float`
- `double`
- `char`
- `boolean`
- `java.lang.String`
- `java.lang.Class`

For example, the following `@ParameterizedTest` method will be invoked three times, with
the values `1`, `2`, and `3` respectively.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ValueSource_example]
----

[[writing-tests-parameterized-tests-sources-null-and-empty]]
===== Null and Empty Sources

In order to check corner cases and verify proper behavior of our software when it is
supplied _bad input_, it can be useful to have `null` and _empty_ values supplied to our
parameterized tests. The following annotations serve as sources of `null` and empty values
for parameterized tests that accept a single argument.

* `{NullSource}`: provides a single `null` argument to the annotated `@ParameterizedTest`
  method.
   - `@NullSource` cannot be used for a parameter that has a primitive type.
* `{EmptySource}`: provides a single _empty_ argument to the annotated
  `@ParameterizedTest` method for parameters of the following types: `java.lang.String`,
  `java.util.Collection` (and concrete subtypes with a `public` no-arg constructor),
  `java.util.List`, `java.util.Set`, `java.util.SortedSet`, `java.util.NavigableSet`,
  `java.util.Map` (and concrete subtypes with a `public` no-arg constructor),
  `java.util.SortedMap`, `java.util.NavigableMap`, primitive arrays (e.g., `int[]`,
  `char[][]`, etc.), object arrays (e.g., `String[]`, `Integer[][]`, etc.).
* `{NullAndEmptySource}`: a _composed annotation_ that combines the functionality of
  `@NullSource` and `@EmptySource`.

If you need to supply multiple varying types of _blank_ strings to a parameterized test,
you can achieve that using <<writing-tests-parameterized-tests-sources-ValueSource>> --
for example, `@ValueSource(strings = {"{nbsp}", "{nbsp}{nbsp}{nbsp}", "\t", "\n"})`.

You can also combine `@NullSource`, `@EmptySource`, and `@ValueSource` to test a wider
range of `null`, _empty_, and _blank_ input. The following example demonstrates how to
achieve this for strings.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=NullAndEmptySource_example1]
----

Making use of the composed `@NullAndEmptySource` annotation simplifies the above as
follows.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=NullAndEmptySource_example2]
----

NOTE: Both variants of the `nullEmptyAndBlankStrings(String)` parameterized test method
result in six invocations: 1 for `null`, 1 for the empty string, and 4 for the explicit
blank strings supplied via `@ValueSource`.

[[writing-tests-parameterized-tests-sources-EnumSource]]
===== @EnumSource

`@EnumSource` provides a convenient way to use `Enum` constants.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=EnumSource_example]
----

The annotation's `value` attribute is optional. When omitted, the declared type of the
first method parameter is used. The test will fail if it does not reference an enum type.
Thus, the `value` attribute is required in the above example because the method parameter
is declared as `TemporalUnit`, i.e. the interface implemented by `ChronoUnit`, which isn't
an enum type. Changing the method parameter type to `ChronoUnit` allows you to omit the
explicit enum type from the annotation as follows.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=EnumSource_example_autodetection]
----

The annotation provides an optional `names` attribute that lets you specify which
constants shall be used, like in the following example. If omitted, all constants will be
used.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=EnumSource_include_example]
----

The `@EnumSource` annotation also provides an optional `mode` attribute that enables
fine-grained control over which constants are passed to the test method. For example, you
can exclude names from the enum constant pool or specify regular expressions as in the
following examples.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=EnumSource_exclude_example]
----

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=EnumSource_regex_example]
----

[[writing-tests-parameterized-tests-sources-MethodSource]]
===== @MethodSource

`{MethodSource}` allows you to refer to one or more _factory_ methods of the test class
or external classes.

Factory methods within the test class must be `static` unless the test class is annotated
with `@TestInstance(Lifecycle.PER_CLASS)`; whereas, factory methods in external classes
must always be `static`.

Each factory method must generate a _stream_ of _arguments_, and each set of arguments
within the stream will be provided as the physical arguments for individual invocations
of the annotated `@ParameterizedTest` method. Generally speaking this translates to a
`Stream` of `Arguments` (i.e., `Stream<Arguments>`); however, the actual concrete return
type can take on many forms. In this context, a "stream" is anything that JUnit can
reliably convert into a `Stream`, such as `Stream`, `DoubleStream`, `LongStream`,
`IntStream`, `Collection`, `Iterator`, `Iterable`, an array of objects, or an array of
primitives. The "arguments" within the stream can be supplied as an instance of
`Arguments`, an array of objects (e.g., `Object[]`), or a single value if the
parameterized test method accepts a single argument.

If you only need a single parameter, you can return a `Stream` of instances of the
parameter type as demonstrated in the following example.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=simple_MethodSource_example]
----

If you do not explicitly provide a factory method name via `@MethodSource`, JUnit Jupiter
will search for a _factory_ method that has the same name as the current
`@ParameterizedTest` method by convention. This is demonstrated in the following example.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=simple_MethodSource_without_value_example]
----

Streams for primitive types (`DoubleStream`, `IntStream`, and `LongStream`) are also
supported as demonstrated by the following example.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=primitive_MethodSource_example]
----

If a parameterized test method declares multiple parameters, you need to return a
collection, stream, or array of `Arguments` instances or object arrays as shown below
(see the Javadoc for `{MethodSource}` for further details on supported return types).
Note that `arguments(Object...)` is a static factory method defined in the `Arguments`
interface. In addition, `Arguments.of(Object...)` may be used as an alternative to
`arguments(Object...)`.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=multi_arg_MethodSource_example]
----

An external, `static` _factory_ method can be referenced by providing its _fully qualified
method name_ as demonstrated in the following example.

[source,java,indent=0]
----
package example;

include::{testDir}/example/ExternalMethodSourceDemo.java[tags=external_MethodSource_example]
----

Factory methods can declare parameters, which will be provided by registered
implementations of the `ParameterResolver` extension API. In the following example, the
factory method is referenced by its name since there is only one such method in the test
class. If there are several local methods with the same name, parameters can also be
provided to differentiate them – for example, `@MethodSource("factoryMethod()")` or
`@MethodSource("factoryMethod(java.lang.String)")`. Alternatively, the factory method
can be referenced by its fully qualified method name, e.g.
`@MethodSource("example.MyTests#factoryMethod(java.lang.String)")`.

[source,java,indent=0]
----
include::{testDir}/example/MethodSourceParameterResolutionDemo.java[tags=parameter_resolution_MethodSource_example]
----


[[writing-tests-parameterized-tests-sources-CsvSource]]
===== @CsvSource

`@CsvSource` allows you to express argument lists as comma-separated values (i.e., CSV
`String` literals). Each string provided via the `value` attribute in `@CsvSource`
represents a CSV record and results in one invocation of the parameterized test. The first
record may optionally be used to supply CSV headers (see the Javadoc for the
`useHeadersInDisplayName` attribute for details and an example).

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=CsvSource_example]
----

The default delimiter is a comma (`,`), but you can use another character by setting the
`delimiter` attribute. Alternatively, the `delimiterString` attribute allows you to use a
`String` delimiter instead of a single character. However, both delimiter attributes
cannot be set simultaneously.

By default, `@CsvSource` uses a single quote (`'`) as its quote character, but this can be
changed via the `quoteCharacter` attribute. See the `'lemon, lime'` value in the example
above and in the table below. An empty, quoted value (`''`) results in an empty `String`
unless the `emptyValue` attribute is set; whereas, an entirely _empty_ value is
interpreted as a `null` reference. By specifying one or more `nullValues`, a custom value
can be interpreted as a `null` reference (see the `NIL` example in the table below). An
`ArgumentConversionException` is thrown if the target type of a `null` reference is a
primitive type.

NOTE: An _unquoted_ empty value will always be converted to a `null` reference regardless
of any custom values configured via the `nullValues` attribute.

Except within a quoted string, leading and trailing whitespace in a CSV column is trimmed
by default. This behavior can be changed by setting the
`ignoreLeadingAndTrailingWhitespace` attribute to `true`.

[cols="50,50"]
|===
| Example Input                                                                           | Resulting Argument List

| `@CsvSource({ "apple, banana" })`                                                       | `"apple"`, `"banana"`
| `@CsvSource({ "apple, 'lemon, lime'" })`                                                | `"apple"`, `"lemon, lime"`
| `@CsvSource({ "apple, ''" })`                                                           | `"apple"`, `""`
| `@CsvSource({ "apple, " })`                                                             | `"apple"`, `null`
| `@CsvSource(value = { "apple, banana, NIL" }, nullValues = "NIL")`                      | `"apple"`, `"banana"`, `null`
| `@CsvSource(value = { " apple , banana" }, ignoreLeadingAndTrailingWhitespace = false)` | `" apple "`, `" banana"`
|===

If the programming language you are using supports _text blocks_ -- for example, Java SE
15 or higher -- you can alternatively use the `textBlock` attribute of `@CsvSource`. Each
record within a text block represents a CSV record and results in one invocation of the
parameterized test. The first record may optionally be used to supply CSV headers by
setting the `useHeadersInDisplayName` attribute to `true` as in the example below.

Using a text block, the previous example can be implemented as follows.

[source,java,indent=0]
----
@ParameterizedTest(name = "[{index}] {arguments}")
@CsvSource(useHeadersInDisplayName = true, textBlock = """
	FRUIT,         RANK
	apple,         1
	banana,        2
	'lemon, lime', 0xF1
	strawberry,    700_000
	""")
void testWithCsvSource(String fruit, int rank) {
	// ...
}
----

The generated display names for the previous example include the CSV header names.

----
[1] FRUIT = apple, RANK = 1
[2] FRUIT = banana, RANK = 2
[3] FRUIT = lemon, lime, RANK = 0xF1
[4] FRUIT = strawberry, RANK = 700_000
----

In contrast to CSV records supplied via the `value` attribute, a text block can contain
comments. Any line beginning with a `+++#+++` symbol will be treated as a comment and
ignored. Note, however, that the `+++#+++` symbol must be the first character on the line
without any leading whitespace. It is therefore recommended that the closing text block
delimiter (`"""`) be placed either at the end of the last line of input or on the
following line, left aligned with the rest of the input (as can be seen in the example
below which demonstrates formatting similar to a table).

[source,java,indent=0]
----
@ParameterizedTest
@CsvSource(delimiter = '|', quoteCharacter = '"', textBlock = """
	#-----------------------------
	#    FRUIT     |     RANK
	#-----------------------------
	     apple     |      1
	#-----------------------------
	     banana    |      2
	#-----------------------------
	  "lemon lime" |     0xF1
	#-----------------------------
	   strawberry  |    700_000
	#-----------------------------
	""")
void testWithCsvSource(String fruit, int rank) {
	// ...
}
----

[NOTE]
====
Java's https://docs.oracle.com/en/java/javase/15/text-blocks/index.html[text block]
feature automatically removes _incidental whitespace_ when the code is compiled.
However other JVM languages such as Groovy and Kotlin do not. Thus, if you are using a
programming language other than Java and your text block contains comments or new lines
within quoted strings, you will need to ensure that there is no leading whitespace within
your text block.
====

[[writing-tests-parameterized-tests-sources-CsvFileSource]]
===== @CsvFileSource

`@CsvFileSource` lets you use comma-separated value (CSV) files from the classpath or the
local file system. Each record from a CSV file results in one invocation of the
parameterized test. The first record may optionally be used to supply CSV headers. You can
instruct JUnit to ignore the headers via the `numLinesToSkip` attribute. If you would like
for the headers to be used in the display names, you can set the `useHeadersInDisplayName`
attribute to `true`. The examples below demonstrate the use of `numLinesToSkip` and
`useHeadersInDisplayName`.

The default delimiter is a comma (`,`), but you can use another character by setting the
`delimiter` attribute. Alternatively, the `delimiterString` attribute allows you to use a
`String` delimiter instead of a single character. However, both delimiter attributes
cannot be set simultaneously.

.Comments in CSV files
NOTE: Any line beginning with a `+++#+++` symbol will be interpreted as a comment and will
be ignored.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=CsvFileSource_example]
----

[source,csv,indent=0]
.two-column.csv
----
include::{testResourcesDir}/two-column.csv[]
----

The following listing shows the generated display names for the first two parameterized
test methods above.

----
[1] country=Sweden, reference=1
[2] country=Poland, reference=2
[3] country=United States of America, reference=3
[4] country=France, reference=700_000
----

The following listing shows the generated display names for the last parameterized test
method above that uses CSV header names.

----
[1] COUNTRY = Sweden, REFERENCE = 1
[2] COUNTRY = Poland, REFERENCE = 2
[3] COUNTRY = United States of America, REFERENCE = 3
[4] COUNTRY = France, REFERENCE = 700_000
----

In contrast to the default syntax used in `@CsvSource`, `@CsvFileSource` uses a double
quote (`+++"+++`) as the quote character by default, but this can be changed via the
`quoteCharacter` attribute. See the `"United States of America"` value in the example
above. An empty, quoted value (`+++""+++`) results in an empty `String` unless the
`emptyValue` attribute is set; whereas, an entirely _empty_ value is interpreted as a
`null` reference. By specifying one or more `nullValues`, a custom value can be
interpreted as a `null` reference. An `ArgumentConversionException` is thrown if the
target type of a `null` reference is a primitive type.

NOTE: An _unquoted_ empty value will always be converted to a `null` reference regardless
of any custom values configured via the `nullValues` attribute.

Except within a quoted string, leading and trailing whitespace in a CSV column is trimmed
by default. This behavior can be changed by setting the
`ignoreLeadingAndTrailingWhitespace` attribute to `true`.

[[writing-tests-parameterized-tests-sources-ArgumentsSource]]
===== @ArgumentsSource

`@ArgumentsSource` can be used to specify a custom, reusable `ArgumentsProvider`. Note
that an implementation of `ArgumentsProvider` must be declared as either a top-level
class or as a `static` nested class.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ArgumentsSource_example]
----

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ArgumentsProvider_example]
----

If you wish to implement a custom `ArgumentsProvider` that also consumes an annotation
(like built-in providers such as `{ValueArgumentsProvider}` or `{CsvArgumentsProvider}`),
you have the possibility to extend the `{AnnotationBasedArgumentsProvider}` class.

[[writing-tests-parameterized-tests-argument-conversion]]
==== Argument Conversion

[[writing-tests-parameterized-tests-argument-conversion-widening]]
===== Widening Conversion

JUnit Jupiter supports
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2[Widening Primitive
Conversion] for arguments supplied to a `@ParameterizedTest`. For example, a
parameterized test annotated with `@ValueSource(ints = { 1, 2, 3 })` can be declared to
accept not only an argument of type `int` but also an argument of type `long`, `float`,
or `double`.

[[writing-tests-parameterized-tests-argument-conversion-implicit]]
===== Implicit Conversion

To support use cases like `@CsvSource`, JUnit Jupiter provides a number of built-in
implicit type converters. The conversion process depends on the declared type of each
method parameter.

For example, if a `@ParameterizedTest` declares a parameter of type `TimeUnit` and the
actual type supplied by the declared source is a `String`, the string will be
automatically converted into the corresponding `TimeUnit` enum constant.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=implicit_conversion_example]
----

`String` instances are implicitly converted to the following target types.

NOTE: Decimal, hexadecimal, and octal `String` literals will be converted to their
integral types: `byte`, `short`, `int`, `long`, and their boxed counterparts.

[[writing-tests-parameterized-tests-argument-conversion-implicit-table]]
[cols="10,90"]
|===
| Target Type | Example

| `boolean`/`Boolean`        | `"true"`                                 -> `true` _(only accepts values 'true' or 'false', case-insensitive)_
| `byte`/`Byte`              | `"15"`, `"0xF"`, or `"017"`              -> `(byte) 15`
| `char`/`Character`         | `"o"`                                    -> `'o'`
| `short`/`Short`            | `"15"`, `"0xF"`, or `"017"`              -> `(short) 15`
| `int`/`Integer`            | `"15"`, `"0xF"`, or `"017"`              -> `15`
| `long`/`Long`              | `"15"`, `"0xF"`, or `"017"`              -> `15L`
| `float`/`Float`            | `"1.0"`                                  -> `1.0f`
| `double`/`Double`          | `"1.0"`                                  -> `1.0d`
| `Enum` subclass            | `"SECONDS"`                              -> `TimeUnit.SECONDS`
| `java.io.File`             | `"/path/to/file"`                        -> `new File("/path/to/file")`
| `java.lang.Class`          | `"java.lang.Integer"`                    -> `java.lang.Integer.class` _(use `$` for nested classes, e.g. `"java.lang.Thread$State"`)_
| `java.lang.Class`          | `"byte"`                                 -> `byte.class` _(primitive types are supported)_
| `java.lang.Class`          | `"char[]"`                               -> `char[].class` _(array types are supported)_
| `java.math.BigDecimal`     | `"123.456e789"`                          -> `new BigDecimal("123.456e789")`
| `java.math.BigInteger`     | `"1234567890123456789"`                  -> `new BigInteger("1234567890123456789")`
| `java.net.URI`             | `"https://junit.org/"`                   -> `URI.create("https://junit.org/")`
| `java.net.URL`             | `"https://junit.org/"`                   -> `URI.create("https://junit.org/").toURL()`
| `java.nio.charset.Charset` | `"UTF-8"`                                -> `Charset.forName("UTF-8")`
| `java.nio.file.Path`       | `"/path/to/file"`                        -> `Paths.get("/path/to/file")`
| `java.time.Duration`       | `"PT3S"`                                 -> `Duration.ofSeconds(3)`
| `java.time.Instant`        | `"1970-01-01T00:00:00Z"`                 -> `Instant.ofEpochMilli(0)`
| `java.time.LocalDateTime`  | `"2017-03-14T12:34:56.789"`              -> `LocalDateTime.of(2017, 3, 14, 12, 34, 56, 789_000_000)`
| `java.time.LocalDate`      | `"2017-03-14"`                           -> `LocalDate.of(2017, 3, 14)`
| `java.time.LocalTime`      | `"12:34:56.789"`                         -> `LocalTime.of(12, 34, 56, 789_000_000)`
| `java.time.MonthDay`       | `"--03-14"`                              -> `MonthDay.of(3, 14)`
| `java.time.OffsetDateTime` | `"2017-03-14T12:34:56.789Z"`             -> `OffsetDateTime.of(2017, 3, 14, 12, 34, 56, 789_000_000, ZoneOffset.UTC)`
| `java.time.OffsetTime`     | `"12:34:56.789Z"`                        -> `OffsetTime.of(12, 34, 56, 789_000_000, ZoneOffset.UTC)`
| `java.time.Period`         | `"P2M6D"`                                -> `Period.of(0, 2, 6)`
| `java.time.YearMonth`      | `"2017-03"`                              -> `YearMonth.of(2017, 3)`
| `java.time.Year`           | `"2017"`                                 -> `Year.of(2017)`
| `java.time.ZonedDateTime`  | `"2017-03-14T12:34:56.789Z"`             -> `ZonedDateTime.of(2017, 3, 14, 12, 34, 56, 789_000_000, ZoneOffset.UTC)`
| `java.time.ZoneId`         | `"Europe/Berlin"`                        -> `ZoneId.of("Europe/Berlin")`
| `java.time.ZoneOffset`     | `"+02:30"`                               -> `ZoneOffset.ofHoursMinutes(2, 30)`
| `java.util.Currency`       | `"JPY"`                                  -> `Currency.getInstance("JPY")`
| `java.util.Locale`         | `"en"`                                   -> `new Locale("en")`
| `java.util.UUID`           | `"d043e930-7b3b-48e3-bdbe-5a3ccfb833db"` -> `UUID.fromString("d043e930-7b3b-48e3-bdbe-5a3ccfb833db")`
|===

[[writing-tests-parameterized-tests-argument-conversion-implicit-fallback]]
====== Fallback String-to-Object Conversion

In addition to implicit conversion from strings to the target types listed in the above
table, JUnit Jupiter also provides a fallback mechanism for automatic conversion from a
`String` to a given target type if the target type declares exactly one suitable _factory
method_ or a _factory constructor_ as defined below.

- __factory method__: a non-private, `static` method declared in the target type that
  accepts a single `String` argument and returns an instance of the target type. The name
  of the method can be arbitrary and need not follow any particular convention.
- __factory constructor__: a non-private constructor in the target type that accepts a
  single `String` argument. Note that the target type must be declared as either a
  top-level class or as a `static` nested class.

NOTE: If multiple _factory methods_ are discovered, they will be ignored. If a _factory
method_ and a _factory constructor_ are discovered, the factory method will be used
instead of the constructor.

For example, in the following `@ParameterizedTest` method, the `Book` argument will be
created by invoking the `Book.fromTitle(String)` factory method and passing `"42 Cats"`
as the title of the book.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=implicit_fallback_conversion_example]
----

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=implicit_fallback_conversion_example_Book]
----

[[writing-tests-parameterized-tests-argument-conversion-explicit]]
===== Explicit Conversion

Instead of relying on implicit argument conversion you may explicitly specify an
`ArgumentConverter` to use for a certain parameter using the `@ConvertWith` annotation
like in the following example. Note that an implementation of `ArgumentConverter` must be
declared as either a top-level class or as a `static` nested class.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=explicit_conversion_example]
----

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=explicit_conversion_example_ToStringArgumentConverter]
----

If the converter is only meant to convert one type to another, you can extend
`TypedArgumentConverter` to avoid boilerplate type checks.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=explicit_conversion_example_TypedArgumentConverter]
----

Explicit argument converters are meant to be implemented by test and extension authors.
Thus, `junit-jupiter-params` only provides a single explicit argument converter that may
also serve as a reference implementation: `JavaTimeArgumentConverter`. It is used via the
composed annotation `JavaTimeConversionPattern`.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=explicit_java_time_converter]
----

If you wish to implement a custom `ArgumentConverter` that also consumes an annotation
(like `JavaTimeArgumentConverter`), you have the possibility to extend the
`{AnnotationBasedArgumentConverter}` class.

[[writing-tests-parameterized-tests-argument-aggregation]]
==== Argument Aggregation

By default, each _argument_ provided to a `@ParameterizedTest` method corresponds to a
single method parameter. Consequently, argument sources which are expected to supply a
large number of arguments can lead to large method signatures.

In such cases, an `{ArgumentsAccessor}` can be used instead of multiple parameters. Using
this API, you can access the provided arguments through a single argument passed to your
test method. In addition, type conversion is supported as discussed in
<<writing-tests-parameterized-tests-argument-conversion-implicit>>.

Besides, you can retrieve the current test invocation index with
`ArgumentsAccessor.getInvocationIndex()`.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ArgumentsAccessor_example]
----

_An instance of `ArgumentsAccessor` is automatically injected into any parameter of type
`ArgumentsAccessor`._

[[writing-tests-parameterized-tests-argument-aggregation-custom]]
===== Custom Aggregators

Apart from direct access to a `@ParameterizedTest` method's arguments using an
`ArgumentsAccessor`, JUnit Jupiter also supports the usage of custom, reusable
_aggregators_.

To use a custom aggregator, implement the `{ArgumentsAggregator}` interface and register
it via the `@AggregateWith` annotation on a compatible parameter in the
`@ParameterizedTest` method. The result of the aggregation will then be provided as an
argument for the corresponding parameter when the parameterized test is invoked. Note
that an implementation of `ArgumentsAggregator` must be declared as either a top-level
class or as a `static` nested class.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ArgumentsAggregator_example]
----

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ArgumentsAggregator_example_PersonAggregator]
----

If you find yourself repeatedly declaring `@AggregateWith(MyTypeAggregator.class)` for
multiple parameterized test methods across your codebase, you may wish to create a custom
_composed annotation_ such as `@CsvToMyType` that is meta-annotated with
`@AggregateWith(MyTypeAggregator.class)`. The following example demonstrates this in
action with a custom `@CsvToPerson` annotation.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ArgumentsAggregator_with_custom_annotation_example]
----

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ArgumentsAggregator_with_custom_annotation_example_CsvToPerson]
----


[[writing-tests-parameterized-tests-display-names]]
==== Customizing Display Names

By default, the display name of a parameterized test invocation contains the invocation
index and the `String` representation of all arguments for that specific invocation.
Each of them is preceded by the parameter name (unless the argument is only available via
an `ArgumentsAccessor` or `ArgumentAggregator`), if present in the bytecode (for Java,
test code must be compiled with the `-parameters` compiler flag).

However, you can customize invocation display names via the `name` attribute of the
`@ParameterizedTest` annotation like in the following example.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=custom_display_names]
----

When executing the above method using the `ConsoleLauncher` you will see output similar to
the following.

....
Display name of container ✔
├─ 1 ==> the rank of 'apple' is 1 ✔
├─ 2 ==> the rank of 'banana' is 2 ✔
└─ 3 ==> the rank of 'lemon, lime' is 3 ✔
....

Please note that `name` is a `MessageFormat` pattern. Thus, a single quote (`'`) needs to
be represented as a doubled single quote (`''`) in order to be displayed.

The following placeholders are supported within custom display names.

[cols="20,80"]
|===
| Placeholder              | Description

| `{displayName}`          | the display name of the method
| `{index}`                | the current invocation index (1-based)
| `{arguments}`            | the complete, comma-separated arguments list
| `{argumentsWithNames}`   | the complete, comma-separated arguments list with parameter names
| `{0}`, `{1}`, ...        | an individual argument
|===

NOTE: When including arguments in display names, their string representations are truncated
if they exceed the configured maximum length. The limit is configurable via the
`junit.jupiter.params.displayname.argument.maxlength` configuration parameter and defaults
to 512 characters.

When using `@MethodSource` or `@ArgumentsSource`, you can provide custom names for
arguments using the `{Named}` API. A custom name will be used if the argument is included
in the invocation display name, like in the example below.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=named_arguments]
----

....
A parameterized test with named arguments ✔
├─ 1: An important file ✔
└─ 2: Another file ✔
....

If you'd like to set a default name pattern for all parameterized tests in your project,
you can declare the `junit.jupiter.params.displayname.default` configuration parameter in
the `junit-platform.properties` file as demonstrated in the following example (see
<<running-tests-config-params>> for other options).

[source,properties,indent=0]
----
junit.jupiter.params.displayname.default = {index}
----

The display name for a parameterized test is determined according to the following
precedence rules:

1. `name` attribute in `@ParameterizedTest`, if present
2. value of the `junit.jupiter.params.displayname.default` configuration parameter, if present
3. `DEFAULT_DISPLAY_NAME` constant defined in `@ParameterizedTest`

[[writing-tests-parameterized-tests-lifecycle-interop]]
==== Lifecycle and Interoperability

Each invocation of a parameterized test has the same lifecycle as a regular `@Test`
method. For example, `@BeforeEach` methods will be executed before each invocation.
Similar to <<writing-tests-dynamic-tests>>, invocations will appear one by one in the
test tree of an IDE. You may at will mix regular `@Test` methods and `@ParameterizedTest`
methods within the same test class.

You may use `ParameterResolver` extensions with `@ParameterizedTest` methods. However,
method parameters that are resolved by argument sources need to come first in the
argument list. Since a test class may contain regular tests as well as parameterized
tests with different parameter lists, values from argument sources are not resolved for
lifecycle methods (e.g. `@BeforeEach`) and test class constructors.

[source,java,indent=0]
----
include::{testDir}/example/ParameterizedTestDemo.java[tags=ParameterResolver_example]
----


[[writing-tests-test-templates]]
=== Test Templates

A `{TestTemplate}` method is not a regular test case but rather a template for test
cases. As such, it is designed to be invoked multiple times depending on the number of
invocation contexts returned by the registered providers. Thus, it must be used in
conjunction with a registered `{TestTemplateInvocationContextProvider}` extension. Each
invocation of a test template method behaves like the execution of a regular `@Test`
method with full support for the same lifecycle callbacks and extensions. Please refer to
<<extensions-test-templates>> for usage examples.

NOTE: <<writing-tests-repeated-tests>> and <<writing-tests-parameterized-tests>> are
built-in specializations of test templates.

[[writing-tests-dynamic-tests]]
=== Dynamic Tests

The standard `@Test` annotation in JUnit Jupiter described in
<<writing-tests-annotations>> is very similar to the `@Test` annotation in JUnit 4. Both
describe methods that implement test cases. These test cases are static in the sense that
they are fully specified at compile time, and their behavior cannot be changed by
anything happening at runtime. _Assumptions provide a basic form of dynamic behavior but
are intentionally rather limited in their expressiveness._

In addition to these standard tests a completely new kind of test programming model has
been introduced in JUnit Jupiter. This new kind of test is a _dynamic test_ which is
generated at runtime by a factory method that is annotated with `@TestFactory`.

In contrast to `@Test` methods, a `@TestFactory` method is not itself a test case but
rather a factory for test cases. Thus, a dynamic test is the product of a factory.
Technically speaking, a `@TestFactory` method must return a single `DynamicNode` or a
`Stream`, `Collection`, `Iterable`, `Iterator`, or array of `DynamicNode` instances.
Instantiable subclasses of `DynamicNode` are `DynamicContainer` and `DynamicTest`.
`DynamicContainer` instances are composed of a _display name_ and a list of dynamic child
nodes, enabling the creation of arbitrarily nested hierarchies of dynamic nodes.
`DynamicTest` instances will be executed lazily, enabling dynamic and even
non-deterministic generation of test cases.

Any `Stream` returned by a `@TestFactory` will be properly closed by calling
`stream.close()`, making it safe to use a resource such as `Files.lines()`.

As with `@Test` methods, `@TestFactory` methods must not be `private` or `static` and may
optionally declare parameters to be resolved by `ParameterResolvers`.

A `DynamicTest` is a test case generated at runtime. It is composed of a _display name_
and an `Executable`. `Executable` is a `@FunctionalInterface` which means that the
implementations of dynamic tests can be provided as _lambda expressions_ or _method
references_.

.Dynamic Test Lifecycle
WARNING: The execution lifecycle of a dynamic test is quite different than it is for a
standard `@Test` case. Specifically, there are no lifecycle callbacks for individual
dynamic tests. This means that `@BeforeEach` and `@AfterEach` methods and their
corresponding extension callbacks are executed for the `@TestFactory` method but not for
each _dynamic test_. In other words, if you access fields from the test instance within a
lambda expression for a dynamic test, those fields will not be reset by callback methods
or extensions between the execution of individual dynamic tests generated by the same
`@TestFactory` method.

As of JUnit Jupiter {jupiter-version}, dynamic tests must always be created by factory
methods; however, this might be complemented by a registration facility in a later
release.

[[writing-tests-dynamic-tests-examples]]
==== Dynamic Test Examples

The following `DynamicTestsDemo` class demonstrates several examples of test factories
and dynamic tests.

The first method returns an invalid return type. Since an invalid return type cannot be
detected at compile time, a `JUnitException` is thrown when it is detected at runtime.

The next six methods demonstrate the generation of a `Collection`, `Iterable`, `Iterator`,
array, or `Stream` of `DynamicTest` instances. Most of these examples do not really
exhibit dynamic behavior but merely demonstrate the supported return types in principle.
However, `dynamicTestsFromStream()` and `dynamicTestsFromIntStream()` demonstrate how to
generate dynamic tests for a given set of strings or a range of input numbers.

The next method is truly dynamic in nature. `generateRandomNumberOfTests()` implements an
`Iterator` that generates random numbers, a display name generator, and a test executor
and then provides all three to `DynamicTest.stream()`. Although the non-deterministic
behavior of `generateRandomNumberOfTests()` is of course in conflict with test
repeatability and should thus be used with care, it serves to demonstrate the
expressiveness and power of dynamic tests.

The next method is similar to `generateRandomNumberOfTests()` in terms of flexibility;
however, `dynamicTestsFromStreamFactoryMethod()` generates a stream of dynamic tests from
an existing `Stream` via the `DynamicTest.stream()` factory method.

For demonstration purposes, the `dynamicNodeSingleTest()` method generates a single
`DynamicTest` instead of a stream, and the `dynamicNodeSingleContainer()` method generates
a nested hierarchy of dynamic tests utilizing `DynamicContainer`.

[source,java]
----
include::{testDir}/example/DynamicTestsDemo.java[tags=user_guide]
----

[[writing-tests-dynamic-tests-uri-test-source]]
==== URI Test Sources for Dynamic Tests

The JUnit Platform provides `TestSource`, a representation of the source of a test or
container used to navigate to its location by IDEs and build tools.

The `TestSource` for a dynamic test or dynamic container can be constructed from a
`java.net.URI` which can be supplied via the `DynamicTest.dynamicTest(String, URI,
Executable)` or `DynamicContainer.dynamicContainer(String, URI, Stream)` factory method,
respectively. The `URI` will be converted to one of the following `TestSource`
implementations.

`ClasspathResourceSource` ::
  If the `URI` contains the `classpath` scheme -- for example,
  `classpath:/test/foo.xml?line=20,column=2`.

`DirectorySource` ::
  If the `URI` represents a directory present in the file system.

`FileSource` ::
  If the `URI` represents a file present in the file system.

`MethodSource` ::
  If the `URI` contains the `method` scheme and the fully qualified method name (FQMN) --
  for example, `method:org.junit.Foo#bar(java.lang.String, java.lang.String[])`. Please
  refer to the Javadoc for `DiscoverySelectors.selectMethod(String)` for the supported
  formats for a FQMN.

`ClassSource` ::
  If the `URI` contains the `class` scheme and the fully qualified class name --
  for example, `class:org.junit.Foo?line=42`.

`UriSource` ::
  If none of the above `TestSource` implementations are applicable.


[[writing-tests-declarative-timeouts]]
=== Timeouts

The `@Timeout` annotation allows one to declare that a test, test factory, test template,
or lifecycle method should fail if its execution time exceeds a given duration. The time
unit for the duration defaults to seconds but is configurable.

The following example shows how `@Timeout` is applied to lifecycle and test methods.

[source,java]
----
include::{testDir}/example/TimeoutDemo.java[tags=user_guide]
----

To apply the same timeout to all test methods within a test class and all of its `@Nested`
classes, you can declare the `@Timeout` annotation at the class level. It will then be
applied to all test, test factory, and test template methods within that class and its
`@Nested` classes unless overridden by a `@Timeout` annotation on a specific method or
`@Nested` class. Please note that `@Timeout` annotations declared at the class level are
not applied to lifecycle methods.

Declaring `@Timeout` on a `@TestFactory` method checks that the factory method returns
within the specified duration but does not verify the execution time of each individual
`DynamicTest` generated by the factory. Please use
`assertTimeout()` or `assertTimeoutPreemptively()` for that purpose.

If `@Timeout` is present on a `@TestTemplate` method — for example, a `@RepeatedTest` or
`@ParameterizedTest` — each invocation will have the given timeout applied to it.

[[writing-tests-declarative-timeouts-thread-mode]]
==== Thread mode

The timeout can be applied using one of the following three thread modes: `SAME_THREAD`,
`SEPARATE_THREAD`, or `INFERRED`.

When `SAME_THREAD` is used, the execution of the annotated method proceeds in the main
thread of the test. If the timeout is exceeded, the main thread is interrupted from
another thread. This is done to ensure interoperability with frameworks such as Spring
that make use of mechanisms that are sensitive to the currently running thread — for
example, `ThreadLocal` transaction management.

On the contrary when `SEPARATE_THREAD` is used, like the `assertTimeoutPreemptively()`
assertion, the execution of the annotated method proceeds in a separate thread, this
can lead to undesirable side effects, see <<writing-tests-assertions-preemptive-timeouts>>.

When `INFERRED` (default) thread mode is used, the thread mode is resolved via the
`junit.jupiter.execution.timeout.thread.mode.default` configuration parameter. If the
provided configuration parameter is invalid or not present then `SAME_THREAD` is used as
fallback.

[[writing-tests-declarative-timeouts-default-timeouts]]
==== Default Timeouts

The following <<running-tests-config-params, configuration parameters>> can be used to
specify default timeouts for all methods of a certain category unless they or an enclosing
test class is annotated with `@Timeout`:

`junit.jupiter.execution.timeout.default`::
    Default timeout for all testable and lifecycle methods
`junit.jupiter.execution.timeout.testable.method.default`::
    Default timeout for all testable methods
`junit.jupiter.execution.timeout.test.method.default`::
    Default timeout for `@Test` methods
`junit.jupiter.execution.timeout.testtemplate.method.default`::
    Default timeout for `@TestTemplate` methods
`junit.jupiter.execution.timeout.testfactory.method.default`::
    Default timeout for `@TestFactory` methods
`junit.jupiter.execution.timeout.lifecycle.method.default`::
    Default timeout for all lifecycle methods
`junit.jupiter.execution.timeout.beforeall.method.default`::
    Default timeout for `@BeforeAll` methods
`junit.jupiter.execution.timeout.beforeeach.method.default`::
    Default timeout for `@BeforeEach` methods
`junit.jupiter.execution.timeout.aftereach.method.default`::
    Default timeout for `@AfterEach` methods
`junit.jupiter.execution.timeout.afterall.method.default`::
    Default timeout for `@AfterAll` methods

More specific configuration parameters override less specific ones. For example,
`junit.jupiter.execution.timeout.test.method.default` overrides
`junit.jupiter.execution.timeout.testable.method.default` which overrides
`junit.jupiter.execution.timeout.default`.

The values of such configuration parameters must be in the following, case-insensitive
format: `<number> [ns|μs|ms|s|m|h|d]`. The space between the number and the unit may be
omitted. Specifying no unit is equivalent to using seconds.

.Example timeout configuration parameter values
[cols="20,80"]
|===
| Parameter value | Equivalent annotation

| `42`            | `@Timeout(42)`
| `42 ns`         | `@Timeout(value = 42, unit = NANOSECONDS)`
| `42 μs`         | `@Timeout(value = 42, unit = MICROSECONDS)`
| `42 ms`         | `@Timeout(value = 42, unit = MILLISECONDS)`
| `42 s`          | `@Timeout(value = 42, unit = SECONDS)`
| `42 m`          | `@Timeout(value = 42, unit = MINUTES)`
| `42 h`          | `@Timeout(value = 42, unit = HOURS)`
| `42 d`          | `@Timeout(value = 42, unit = DAYS)`
|===


[[writing-tests-declarative-timeouts-polling]]
==== Using @Timeout for Polling Tests

When dealing with asynchronous code, it is common to write tests that poll while waiting
for something to happen before performing any assertions. In some cases you can rewrite
the logic to use a `CountDownLatch` or another synchronization mechanism, but sometimes
that is not possible — for example, if the subject under test sends a message to a channel
in an external message broker and assertions cannot be performed until the message has
been successfully sent through the channel. Asynchronous tests like these require some
form of timeout to ensure they don't hang the test suite by executing indefinitely, as
would be the case if an asynchronous message never gets successfully delivered.

By configuring a timeout for an asynchronous test that polls, you can ensure that the test
does not execute indefinitely. The following example demonstrates how to achieve this with
JUnit Jupiter's `@Timeout` annotation. This technique can be used to implement "poll
until" logic very easily.

[source,java]
----
include::{testDir}/example/PollingTimeoutDemo.java[tags=user_guide,indent=0]
----

NOTE: If you need more control over polling intervals and greater flexibility with
asynchronous tests, consider using a dedicated library such as
link:https://github.com/awaitility/awaitility[Awaitility].


[[writing-tests-declarative-timeouts-mode]]
==== Disable @Timeout Globally
When stepping through your code in a debug session, a fixed timeout limit may influence
the result of the test, e.g. mark the test as failed although all assertions were met.

JUnit Jupiter supports the `junit.jupiter.execution.timeout.mode` configuration parameter
to configure when timeouts are applied. There are three modes: `enabled`, `disabled`,
and `disabled_on_debug`. The default mode is `enabled`.
A VM runtime is considered to run in debug mode when one of its input parameters starts
with `-agentlib:jdwp` or `-Xrunjdwp`.
This heuristic is queried by the `disabled_on_debug` mode.


[[writing-tests-parallel-execution]]
=== Parallel Execution

By default, JUnit Jupiter tests are run sequentially in a single thread. Running tests in
parallel -- for example, to speed up execution -- is available as an opt-in feature since
version 5.3. To enable parallel execution, set the
`junit.jupiter.execution.parallel.enabled` configuration parameter to `true` -- for
example, in `junit-platform.properties` (see <<running-tests-config-params>> for other
options).

Please note that enabling this property is only the first step required to execute tests
in parallel. If enabled, test classes and methods will still be executed sequentially by
default. Whether or not a node in the test tree is executed concurrently is controlled by
its execution mode. The following two modes are available.

`SAME_THREAD`::
  Force execution in the same thread used by the parent. For example, when used on a test
  method, the test method will be executed in the same thread as any `@BeforeAll` or
  `@AfterAll` methods of the containing test class.

`CONCURRENT`::
  Execute concurrently unless a resource lock forces execution in the same thread.

By default, nodes in the test tree use the `SAME_THREAD` execution mode. You can change
the default by setting the `junit.jupiter.execution.parallel.mode.default` configuration
parameter. Alternatively, you can use the `{Execution}` annotation to change the
execution mode for the annotated element and its subelements (if any) which allows you to
activate parallel execution for individual test classes, one by one.

[source,properties]
.Configuration parameters to execute all tests in parallel
----
junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = concurrent
----

The default execution mode is applied to all nodes of the test tree with a few notable
exceptions, namely test classes that use the `Lifecycle.PER_CLASS` mode or a
`{MethodOrderer}` (except for `{MethodOrderer_Random}`). In the former case, test authors
have to ensure that the test class is thread-safe; in the latter, concurrent execution
might conflict with the configured execution order. Thus, in both cases, test methods in
such test classes are only executed concurrently if the `@Execution(CONCURRENT)`
annotation is present on the test class or method.

When parallel execution is enabled and a default `{ClassOrderer}` is registered (see
<<writing-tests-test-execution-order-classes>> for details), top-level test classes will
initially be sorted accordingly and scheduled in that order. However, they are not
guaranteed to be started in exactly that order since the threads they are executed on are
not controlled directly by JUnit.

All nodes of the test tree that are configured with the `CONCURRENT` execution mode will
be executed fully in parallel according to the provided
<<writing-tests-parallel-execution-config, configuration>> while observing the
declarative <<writing-tests-parallel-execution-synchronization, synchronization>>
mechanism. Please note that <<running-tests-capturing-output>> needs to be enabled
separately.

In addition, you can configure the default execution mode for top-level classes by setting
the `junit.jupiter.execution.parallel.mode.classes.default` configuration parameter. By
combining both configuration parameters, you can configure classes to run in parallel but
their methods in the same thread:

[source,properties]
.Configuration parameters to execute top-level classes in parallel but methods in same thread
----
junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = same_thread
junit.jupiter.execution.parallel.mode.classes.default = concurrent
----

The opposite combination will run all methods within one class in parallel, but top-level
classes will run sequentially:

[source,properties]
.Configuration parameters to execute top-level classes sequentially but their methods in parallel
----
junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = concurrent
junit.jupiter.execution.parallel.mode.classes.default = same_thread
----

The following diagram illustrates how the execution of two top-level test classes `A` and
`B` with two test methods per class behaves for all four combinations of
`junit.jupiter.execution.parallel.mode.default` and
`junit.jupiter.execution.parallel.mode.classes.default` (see labels in first column).

////
Source: https://mermaidjs.github.io/mermaid-live-editor/#/view/eyJjb2RlIjoiZ2FudHRcbiAgICBkYXRlRm9ybWF0ICBZWVlZLU1NLUREXG5cbiAgICBzZWN0aW9uIChzYW1lX3RocmVhZCwgc2FtZV90aHJlYWQpXG4gICAgQS50ZXN0MSgpIDphc3MxLCAyMDE5LTAxLTAxLCAxZFxuICAgIEEudGVzdDIoKSA6YXNzMiwgYWZ0ZXIgYXNzMSwgMWRcbiAgICBCLnRlc3QxKCkgOmJzczEsIGFmdGVyIGFzczIsIDFkXG4gICAgQi50ZXN0MigpIDpic3MyLCBhZnRlciBic3MxLCAxZFxuXG4gICAgc2VjdGlvbiAoc2FtZV90aHJlYWQsIGNvbmN1cnJlbnQpXG4gICAgQS50ZXN0MSgpIDphc2MxLCAyMDE5LTAxLTAxLCAxZFxuICAgIEEudGVzdDIoKSA6YXNjMiwgYWZ0ZXIgYXNjMSwgMWRcbiAgICBCLnRlc3QxKCkgOmJzYzEsIDIwMTktMDEtMDEsIDFkXG4gICAgQi50ZXN0MigpIDpic2MyLCBhZnRlciBic2MxLCAxZFxuXG4gICAgc2VjdGlvbiAoY29uY3VycmVudCwgc2FtZV90aHJlYWQpXG4gICAgQS50ZXN0MSgpIDphY3MxLCAyMDE5LTAxLTAxLCAxZFxuICAgIEEudGVzdDIoKSA6YWNzMiwgMjAxOS0wMS0wMSwgMWRcbiAgICBCLnRlc3QxKCkgOmJjczEsIGFmdGVyIGFjczIsIDFkXG4gICAgQi50ZXN0MigpIDpiY3MyLCBhZnRlciBhY3MyLCAxZFxuXG4gICAgc2VjdGlvbiAoY29uY3VycmVudCwgY29uY3VycmVudClcbiAgICBBLnRlc3QxKCkgOmFjYzEsIDIwMTktMDEtMDEsIDFkXG4gICAgQS50ZXN0MigpIDphY2MyLCAyMDE5LTAxLTAxLCAxZFxuICAgIEIudGVzdDEoKSA6YmNjMSwgMjAxOS0wMS0wMSwgMWRcbiAgICBCLnRlc3QyKCkgOmJjYzIsIDIwMTktMDEtMDEsIDFkXG4iLCJtZXJtYWlkIjp7InRoZW1lIjoibmV1dHJhbCIsImdhbnR0Ijp7ImxlZnRQYWRkaW5nIjoyMjUsImJhckdhcCI6NSwiZ3JpZExpbmVTdGFydFBhZGRpbmciOjEwLCJiYXJIZWlnaHQiOjMwLCJmb250U2l6ZSI6MTV9LCJ0aGVtZUNTUyI6Ii50YXNrVGV4dCwgLnNlY3Rpb25UaXRsZSB7IGZvbnQtZmFtaWx5OiAnT3BlbiBTYW5zJzsgZm9udC1zaXplOjE1cHggfSAuZ3JpZCAudGljayB0ZXh0IHsgZGlzcGxheTpub25lIH0gLmdyaWQgLnRpY2s6bnRoLWNoaWxkKDJuKzEpIHsgZGlzcGxheTpub25lIH0ifX0

gantt
    dateFormat  YYYY-MM-DD

    section (same_thread, same_thread)
    A.test1() :ass1, 2019-01-01, 1d
    A.test2() :ass2, after ass1, 1d
    B.test1() :bss1, after ass2, 1d
    B.test2() :bss2, after bss1, 1d

    section (same_thread, concurrent)
    A.test1() :asc1, 2019-01-01, 1d
    A.test2() :asc2, after asc1, 1d
    B.test1() :bsc1, 2019-01-01, 1d
    B.test2() :bsc2, after bsc1, 1d

    section (concurrent, same_thread)
    A.test1() :acs1, 2019-01-01, 1d
    A.test2() :acs2, 2019-01-01, 1d
    B.test1() :bcs1, after acs2, 1d
    B.test2() :bcs2, after acs2, 1d

    section (concurrent, concurrent)
    A.test1() :acc1, 2019-01-01, 1d
    A.test2() :acc2, 2019-01-01, 1d
    B.test1() :bcc1, 2019-01-01, 1d
    B.test2() :bcc2, 2019-01-01, 1d

////
image::writing-tests_execution_mode.svg[caption='',title='Default execution mode configuration combinations']

If the `junit.jupiter.execution.parallel.mode.classes.default` configuration parameter is
not explicitly set, the value for `junit.jupiter.execution.parallel.mode.default` will be
used instead.

[[writing-tests-parallel-execution-config]]
==== Configuration

Properties such as the desired parallelism and the maximum pool size can be configured
using a `{ParallelExecutionConfigurationStrategy}`. The JUnit Platform provides two
implementations out of the box: `dynamic` and `fixed`. Alternatively, you may implement a
`custom` strategy.

To select a strategy, set the `junit.jupiter.execution.parallel.config.strategy`
configuration parameter to one of the following options.

`dynamic`::
  Computes the desired parallelism based on the number of available processors/cores
  multiplied by the `junit.jupiter.execution.parallel.config.dynamic.factor`
  configuration parameter (defaults to `1`).
  The optional `junit.jupiter.execution.parallel.config.dynamic.max-pool-size-factor`
  configuration parameter can be used to limit the maximum number of threads.

`fixed`::
  Uses the mandatory `junit.jupiter.execution.parallel.config.fixed.parallelism`
  configuration parameter as the desired parallelism.
  The optional `junit.jupiter.execution.parallel.config.fixed.max-pool-size`
  configuration parameter can be used to limit the maximum number of threads.

`custom`::
  Allows you to specify a custom `{ParallelExecutionConfigurationStrategy}`
  implementation via the mandatory `junit.jupiter.execution.parallel.config.custom.class`
  configuration parameter to determine the desired configuration.

If no configuration strategy is set, JUnit Jupiter uses the `dynamic` configuration
strategy with a factor of `1`. Consequently, the desired parallelism will be equal to the
number of available processors/cores.

.Parallelism alone does not imply maximum number of concurrent threads
NOTE: By default JUnit Jupiter does not guarantee that the number of concurrently
executing tests will not exceed the configured parallelism. For example, when using one
of the synchronization mechanisms described in the next section, the `ForkJoinPool` that
is used behind the scenes may spawn additional threads to ensure execution continues with
sufficient parallelism.
If you require such guarantees, with Java 9+, it is possible to limit the maximum number
of concurrent threads by controlling the maximum pool size of the `dynamic`, `fixed` and
`custom` strategies.

[[writing-tests-parallel-execution-config-properties]]
===== Relevant properties

The following table lists relevant properties for configuring parallel execution. See
<<running-tests-config-params>> for details on how to set such properties.

[cols="d,d,a,d"]
|===
|Property |Description |Supported Values |Default Value

| ```junit.jupiter.execution.parallel.enabled```
| Enable parallel test execution
|
  * `true`
  * `false`
| ```false```

| ```junit.jupiter.execution.parallel.mode.default```
| Default execution mode of nodes in the test tree
|
  * `concurrent`
  * `same_thread`
| ```same_thread```

| ```junit.jupiter.execution.parallel.mode.classes.default```
| Default execution mode of top-level classes
|
  * `concurrent`
  * `same_thread`
| ```same_thread```

| ```junit.jupiter.execution.parallel.config.strategy```
| Execution strategy for desired parallelism and maximum pool size
|
  * `dynamic`
  * `fixed`
  * `custom`
| ```dynamic```

| ```junit.jupiter.execution.parallel.config.dynamic.factor```
| Factor to be multiplied by the number of available processors/cores to determine the
  desired parallelism for the ```dynamic``` configuration strategy
| a positive decimal number
| ```1.0```

| ```junit.jupiter.execution.parallel.config.dynamic.max-pool-size-factor```
| Factor to be multiplied by the number of available processors/cores and the value of
  `junit.jupiter.execution.parallel.config.dynamic.factor` to determine the desired
  parallelism for the ```dynamic``` configuration strategy
| a positive decimal number, must be greater than or equal to `1.0`
| 256 + the value of `junit.jupiter.execution.parallel.config.dynamic.factor` multiplied
  by the number of available processors/cores

| ```junit.jupiter.execution.parallel.config.dynamic.saturate```
| Disable saturation of the underlying fork-join pool for the ```dynamic``` configuration
strategy
|
* `true`
* `false`
| ```true```

| ```junit.jupiter.execution.parallel.config.fixed.parallelism```
| Desired parallelism for the ```fixed``` configuration strategy
| a positive integer
| no default value

| ```junit.jupiter.execution.parallel.config.fixed.max-pool-size```
| Desired maximum pool size of the underlying fork-join pool for the ```fixed```
  configuration strategy
| a positive integer, must be greater than or equal to `junit.jupiter.execution.parallel.config.fixed.parallelism`
| 256 + the value of `junit.jupiter.execution.parallel.config.fixed.parallelism`

| ```junit.jupiter.execution.parallel.config.fixed.saturate```
| Disable saturation of the underlying fork-join pool for the ```fixed``` configuration
  strategy
|
  * `true`
  * `false`
| ```true```

| ```junit.jupiter.execution.parallel.config.custom.class```
| Fully qualified class name of the _ParallelExecutionConfigurationStrategy_ to be
  used for the ```custom``` configuration strategy
| for example, _org.example.CustomStrategy_
| no default value
|===

[[writing-tests-parallel-execution-synchronization]]
==== Synchronization

In addition to controlling the execution mode using the `{Execution}` annotation, JUnit
Jupiter provides another annotation-based declarative synchronization mechanism. The
`{ResourceLock}` annotation allows you to declare that a test class or method uses a
specific shared resource that requires synchronized access to ensure reliable test
execution. The shared resource is identified by a unique name which is a `String`. The
name can be user-defined or one of the predefined constants in `{Resources}`:
`SYSTEM_PROPERTIES`, `SYSTEM_OUT`, `SYSTEM_ERR`, `LOCALE`, or `TIME_ZONE`.

If the tests in the following example were run in parallel _without_ the use of
{ResourceLock}, they would be _flaky_. Sometimes they would pass, and at other times they
would fail due to the inherent race condition of writing and then reading the same JVM
System Property.

When access to shared resources is declared using the `{ResourceLock}` annotation, the
JUnit Jupiter engine uses this information to ensure that no conflicting tests are run in
parallel.

[NOTE]
.Running tests in isolation
====
If most of your test classes can be run in parallel without any synchronization but you
have some test classes that need to run in isolation, you can mark the latter with the
`{Isolated}` annotation. Tests in such classes are executed sequentially without any other
tests running at the same time.
====

In addition to the `String` that uniquely identifies the shared resource, you may specify
an access mode. Two tests that require `READ` access to a shared resource may run in
parallel with each other but not while any other test that requires `READ_WRITE` access
to the same shared resource is running.

[source,java]
----
include::{testDir}/example/SharedResourcesDemo.java[tags=user_guide]
----


[[writing-tests-built-in-extensions]]
=== Built-in Extensions

While the JUnit team encourages reusable extensions to be packaged and maintained in
separate libraries, the JUnit Jupiter API artifact includes a few user-facing extension
implementations that are considered so generally useful that users shouldn't have to add
another dependency.

[[writing-tests-built-in-extensions-TempDirectory]]
==== The TempDirectory Extension

The built-in `{TempDirectory}` extension is used to create and clean up a temporary
directory for an individual test or all tests in a test class. It is registered by
default. To use it, annotate a non-final, unassigned field of type `java.nio.file.Path` or
`java.io.File` with `{TempDir}` or add a parameter of type `java.nio.file.Path` or
`java.io.File` annotated with `@TempDir` to a lifecycle method or test method.

For example, the following test declares a parameter annotated with `@TempDir` for a
single test method, creates and writes to a file in the temporary directory, and checks
its content.

[source,java,indent=0]
.A test method that requires a temporary directory
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_parameter_injection]
----

You can inject multiple temporary directories by specifying multiple annotated parameters.

[source,java,indent=0]
.A test method that requires multiple temporary directories
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_multiple_directories]
----

WARNING: To revert to the old behavior of using a single temporary directory for the
entire test class or method (depending on which level the annotation is used), you can set
the `junit.jupiter.tempdir.scope` configuration parameter to `per_context`. However,
please note that this option is deprecated and will be removed in a future release.

`@TempDir` is not supported on constructor parameters. If you wish to retain a single
reference to a temp directory across lifecycle methods and the current test method, please
use field injection by annotating an instance field with `@TempDir`.

The following example stores a _shared_ temporary directory in a `static` field. This
allows the same `sharedTempDir` to be used in all lifecycle methods and test methods of
the test class. For better isolation, you should use an instance field so that each test
method uses a separate directory.

[source,java,indent=0]
.A test class that shares a temporary directory across test methods
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_field_injection]
----

The `@TempDir` annotation has an optional `cleanup` attribute that can be set to either
`NEVER`, `ON_SUCCESS`, or `ALWAYS`. If the cleanup mode is set to `NEVER`, temporary
directories are not deleted after a test completes. If it is set to `ON_SUCCESS`,
temporary directories are deleted only after a test completed successfully.

The default cleanup mode is `ALWAYS`. You can use the
`junit.jupiter.tempdir.cleanup.mode.default`
<<running-tests-config-params, configuration parameter>> to override this default.

[source,java,indent=0]
.A test class with a temporary directory that doesn't get cleaned up
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_cleanup_mode]
----

`@TempDir` supports the programmatic creation of temporary directories via the optional
`factory` attribute. This is typically used to gain control over the temporary directory
creation, like defining the parent directory or the file system that should be used.

Factories can be created by implementing `TempDirFactory`. Implementations must provide a
no-args constructor and should not make any assumptions regarding when and how many times
they are instantiated, but they can assume that their `createTempDirectory(...)` and
`close()` methods will both be called once per instance, in this order, and from the same
thread.

The default implementation available in Jupiter delegates the directory creation to
`java.nio.file.Files::createTempDirectory`, passing `junit` as the prefix string to be
used in generating the directory's name.

The following example defines a factory that uses the test name as the directory name
prefix instead of the `junit` constant value.

[source,java,indent=0]
.A test class with a temporary directory having the test name as the directory name prefix
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_factory_name_prefix]
----

It's also possible to use an in-memory file system like `{Jimfs}` for the creation of the
temporary directory. The following example demonstrates how to achieve that.

[source,java,indent=0]
.A test class with a temporary directory created with the Jimfs in-memory file system
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_factory_jimfs]
----

`@TempDir` can also be used as a <<writing-tests-meta-annotations, meta-annotation>> to
reduce repetition. The following code listing shows how to create a custom `@JimfsTempDir`
annotation that can be used as a drop-in replacement for
`@TempDir(factory = JimfsTempDirFactory.class)`.

[source,java,indent=0]
.A custom annotation meta-annotated with `@TempDir`
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_composed_annotation]
----

The following example demonstrates how to use the custom `@JimfsTempDir` annotation.

[source,java,indent=0]
.A test class using the custom annotation
----
include::{testDir}/example/TempDirectoryDemo.java[tags=user_guide_composed_annotation_usage]
----

Meta-annotations or additional annotations on the field or parameter the `TempDir`
annotation is declared on might expose additional attributes to configure the factory.
Such annotations and related attributes can be accessed via the `AnnotatedElementContext`
parameter of `createTempDirectory`.

You can use the `junit.jupiter.tempdir.factory.default`
<<running-tests-config-params, configuration parameter>> to specify the fully qualified
class name of the `TempDirFactory` you would like to use by default. Just like for
factories configured via the `factory` attribute of the `@TempDir` annotation,
the supplied class has to implement the `TempDirFactory` interface. The default factory
will be used for all `@TempDir` annotations unless the `factory` attribute of the
annotation specifies a different factory.

In summary, the factory for a temporary directory is determined according to the
following precedence rules:

1. The `factory` attribute of the `@TempDir` annotation, if present
2. The default `TempDirFactory` configured via the configuration
parameter, if present
3. Otherwise, `org.junit.jupiter.api.io.TempDirFactory$Standard` will be used.