--- language: - el pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - longformer metrics: - accuracy_cosinus - accuracy_euclidean - accuracy_manhattan model-index: - name: st-greek-media-longformer-4096 results: [ { "task": { "name": "STS Benchmark", "type": "sentence-similarity" }, "metrics": [ { "type": "accuracy_cosinus", "value": 0.9425676261863862 }, { "type": "accuracy_euclidean", "value": 0.942637030867732 }, { "type": "accuracy_manhattan", "value": 0.9427758402304235 }, ], "dataset": { "name": "all_custom_greek_media_triplets", "type": "sentence-pair", }, }, ] --- # Greek Media SLF (Sentence-Longformer) This is a [sentence-transformers](https://www.SBERT.net) based on the [Greek Media Longformer](https://huggingface.co/dimitriz/greek-media-longformer-4096) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('dimitriz/st-greek-media-longformer-4096') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('dimitriz/st-greek-media-longformer-4096') model = AutoModel.from_pretrained('dimitriz/st-greek-media-longformer-4096') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the _Sentence Embeddings Benchmark_: [https://seb.sbert.net](https://seb.sbert.net?model_name=dimitriz/st-greek-media-longformer-4096) ## Training The model was trained on a custom dataset containing triplets from the **combined** Greek 'internet', 'social-media' and 'press' domains, described in the paper [DACL](https://...). - The dataset was created by sampling triplets of sentences from the same domain, where the first two sentences are more similar than the third one. - Training objective was to maximize the similarity between the first two sentences and minimize the similarity between the first and the third sentence. - The model was trained for 3 epochs with a batch size of 2 and a maximum sequence length of 4096 tokens. - The model was trained on a single NVIDIA RTX A6000 GPU with 48GB of memory. The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 172897 with parameters: ``` {'batch_size': 1, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 17290, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors The model has been officially released with the article "From Pre-training to Meta-Learning: A journey in Low-Resource-Language Representation Learning". Dimitrios Zaikis and Ioannis Vlahavas. In: IEEE Access. If you use the model, please cite the following: ```bibtex @ARTICLE{10288436, author = {Zaikis, Dimitrios and Vlahavas, Ioannis}, journal = {IEEE Access}, title = {From Pre-training to Meta-Learning: A journey in Low-Resource-Language Representation Learning}, year = {2023}, volume = {}, number = {}, pages = {1-1}, doi = {10.1109/ACCESS.2023.3326337} } ```