diff --git "a/dreamshaper-xl-lightning-4step-ios-6bits_split_einsum_compiled/VAEDecoder.mlmodelc/model.mil" "b/dreamshaper-xl-lightning-4step-ios-6bits_split_einsum_compiled/VAEDecoder.mlmodelc/model.mil" deleted file mode 100644--- "a/dreamshaper-xl-lightning-4step-ios-6bits_split_einsum_compiled/VAEDecoder.mlmodelc/model.mil" +++ /dev/null @@ -1,999 +0,0 @@ -program(1.0) -[buildInfo = dict, tensor>({{"coremlc-component-MIL", "3400.43.1"}, {"coremlc-version", "3400.58.2"}, {"coremltools-component-torch", "2.4.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})] -{ - func main(tensor z) { - tensor input_1_pad_type_0 = const()[name = tensor("input_1_pad_type_0"), val = tensor("valid")]; - tensor input_1_strides_0 = const()[name = tensor("input_1_strides_0"), val = tensor([1, 1])]; - tensor input_1_pad_0 = const()[name = tensor("input_1_pad_0"), val = tensor([0, 0, 0, 0])]; - tensor input_1_dilations_0 = const()[name = tensor("input_1_dilations_0"), val = tensor([1, 1])]; - tensor input_1_groups_0 = const()[name = tensor("input_1_groups_0"), val = tensor(1)]; - tensor post_quant_conv_weight_to_fp16 = const()[name = tensor("post_quant_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; - tensor post_quant_conv_bias_to_fp16 = const()[name = tensor("post_quant_conv_bias_to_fp16"), val = tensor([-0x1.d7cp-5, 0x1.cf4p-3, -0x1.c7p-4, 0x1.adp-3])]; - tensor input_1_cast_fp16 = conv(bias = post_quant_conv_bias_to_fp16, dilations = input_1_dilations_0, groups = input_1_groups_0, pad = input_1_pad_0, pad_type = input_1_pad_type_0, strides = input_1_strides_0, weight = post_quant_conv_weight_to_fp16, x = z)[name = tensor("input_1_cast_fp16")]; - tensor input_3_pad_type_0 = const()[name = tensor("input_3_pad_type_0"), val = tensor("custom")]; - tensor input_3_pad_0 = const()[name = tensor("input_3_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_3_strides_0 = const()[name = tensor("input_3_strides_0"), val = tensor([1, 1])]; - tensor input_3_dilations_0 = const()[name = tensor("input_3_dilations_0"), val = tensor([1, 1])]; - tensor input_3_groups_0 = const()[name = tensor("input_3_groups_0"), val = tensor(1)]; - tensor decoder_conv_in_weight_to_fp16 = const()[name = tensor("decoder_conv_in_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(192)))]; - tensor decoder_conv_in_bias_to_fp16 = const()[name = tensor("decoder_conv_in_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37120)))]; - tensor input_3_cast_fp16 = conv(bias = decoder_conv_in_bias_to_fp16, dilations = input_3_dilations_0, groups = input_3_groups_0, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = input_3_strides_0, weight = decoder_conv_in_weight_to_fp16, x = input_1_cast_fp16)[name = tensor("input_3_cast_fp16")]; - tensor reshape_0_shape_0 = const()[name = tensor("reshape_0_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_0_cast_fp16 = reshape(shape = reshape_0_shape_0, x = input_3_cast_fp16)[name = tensor("reshape_0_cast_fp16")]; - tensor reduce_mean_0_axes_0 = const()[name = tensor("reduce_mean_0_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_0_keep_dims_0 = const()[name = tensor("reduce_mean_0_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_0_cast_fp16 = reduce_mean(axes = reduce_mean_0_axes_0, keep_dims = reduce_mean_0_keep_dims_0, x = reshape_0_cast_fp16)[name = tensor("reduce_mean_0_cast_fp16")]; - tensor sub_0_cast_fp16 = sub(x = reshape_0_cast_fp16, y = reduce_mean_0_cast_fp16)[name = tensor("sub_0_cast_fp16")]; - tensor square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor("square_0_cast_fp16")]; - tensor reduce_mean_2_axes_0 = const()[name = tensor("reduce_mean_2_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_2_keep_dims_0 = const()[name = tensor("reduce_mean_2_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_2_cast_fp16 = reduce_mean(axes = reduce_mean_2_axes_0, keep_dims = reduce_mean_2_keep_dims_0, x = square_0_cast_fp16)[name = tensor("reduce_mean_2_cast_fp16")]; - tensor add_0_y_0_to_fp16 = const()[name = tensor("add_0_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_0_cast_fp16 = add(x = reduce_mean_2_cast_fp16, y = add_0_y_0_to_fp16)[name = tensor("add_0_cast_fp16")]; - tensor sqrt_0_cast_fp16 = sqrt(x = add_0_cast_fp16)[name = tensor("sqrt_0_cast_fp16")]; - tensor real_div_0_cast_fp16 = real_div(x = sub_0_cast_fp16, y = sqrt_0_cast_fp16)[name = tensor("real_div_0_cast_fp16")]; - tensor reshape_1_shape_0 = const()[name = tensor("reshape_1_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_1_cast_fp16 = reshape(shape = reshape_1_shape_0, x = real_div_0_cast_fp16)[name = tensor("reshape_1_cast_fp16")]; - tensor add_1_mean_0_to_fp16 = const()[name = tensor("add_1_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(38208)))]; - tensor add_1_variance_0_to_fp16 = const()[name = tensor("add_1_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39296)))]; - tensor add_1_gamma_0_to_fp16 = const()[name = tensor("add_1_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40384)))]; - tensor add_1_beta_0_to_fp16 = const()[name = tensor("add_1_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41472)))]; - tensor add_1_epsilon_0_to_fp16 = const()[name = tensor("add_1_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_1_cast_fp16 = batch_norm(beta = add_1_beta_0_to_fp16, epsilon = add_1_epsilon_0_to_fp16, gamma = add_1_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_1_cast_fp16)[name = tensor("add_1_cast_fp16")]; - tensor input_7_cast_fp16 = silu(x = add_1_cast_fp16)[name = tensor("input_7_cast_fp16")]; - tensor input_9_pad_type_0 = const()[name = tensor("input_9_pad_type_0"), val = tensor("custom")]; - tensor input_9_pad_0 = const()[name = tensor("input_9_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_9_strides_0 = const()[name = tensor("input_9_strides_0"), val = tensor([1, 1])]; - tensor input_9_dilations_0 = const()[name = tensor("input_9_dilations_0"), val = tensor([1, 1])]; - tensor input_9_groups_0 = const()[name = tensor("input_9_groups_0"), val = tensor(1)]; - tensor decoder_mid_block_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42560)))]; - tensor decoder_mid_block_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4761216)))]; - tensor input_9_cast_fp16 = conv(bias = decoder_mid_block_resnets_0_conv1_bias_to_fp16, dilations = input_9_dilations_0, groups = input_9_groups_0, pad = input_9_pad_0, pad_type = input_9_pad_type_0, strides = input_9_strides_0, weight = decoder_mid_block_resnets_0_conv1_weight_to_fp16, x = input_7_cast_fp16)[name = tensor("input_9_cast_fp16")]; - tensor reshape_4_shape_0 = const()[name = tensor("reshape_4_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_4_cast_fp16 = reshape(shape = reshape_4_shape_0, x = input_9_cast_fp16)[name = tensor("reshape_4_cast_fp16")]; - tensor reduce_mean_3_axes_0 = const()[name = tensor("reduce_mean_3_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_3_keep_dims_0 = const()[name = tensor("reduce_mean_3_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_3_cast_fp16 = reduce_mean(axes = reduce_mean_3_axes_0, keep_dims = reduce_mean_3_keep_dims_0, x = reshape_4_cast_fp16)[name = tensor("reduce_mean_3_cast_fp16")]; - tensor sub_2_cast_fp16 = sub(x = reshape_4_cast_fp16, y = reduce_mean_3_cast_fp16)[name = tensor("sub_2_cast_fp16")]; - tensor square_1_cast_fp16 = square(x = sub_2_cast_fp16)[name = tensor("square_1_cast_fp16")]; - tensor reduce_mean_5_axes_0 = const()[name = tensor("reduce_mean_5_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_5_keep_dims_0 = const()[name = tensor("reduce_mean_5_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_5_cast_fp16 = reduce_mean(axes = reduce_mean_5_axes_0, keep_dims = reduce_mean_5_keep_dims_0, x = square_1_cast_fp16)[name = tensor("reduce_mean_5_cast_fp16")]; - tensor add_2_y_0_to_fp16 = const()[name = tensor("add_2_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_2_cast_fp16 = add(x = reduce_mean_5_cast_fp16, y = add_2_y_0_to_fp16)[name = tensor("add_2_cast_fp16")]; - tensor sqrt_1_cast_fp16 = sqrt(x = add_2_cast_fp16)[name = tensor("sqrt_1_cast_fp16")]; - tensor real_div_1_cast_fp16 = real_div(x = sub_2_cast_fp16, y = sqrt_1_cast_fp16)[name = tensor("real_div_1_cast_fp16")]; - tensor reshape_5_shape_0 = const()[name = tensor("reshape_5_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_5_cast_fp16 = reshape(shape = reshape_5_shape_0, x = real_div_1_cast_fp16)[name = tensor("reshape_5_cast_fp16")]; - tensor add_3_gamma_0_to_fp16 = const()[name = tensor("add_3_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4762304)))]; - tensor add_3_beta_0_to_fp16 = const()[name = tensor("add_3_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4763392)))]; - tensor add_3_epsilon_0_to_fp16 = const()[name = tensor("add_3_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_3_cast_fp16 = batch_norm(beta = add_3_beta_0_to_fp16, epsilon = add_3_epsilon_0_to_fp16, gamma = add_3_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_5_cast_fp16)[name = tensor("add_3_cast_fp16")]; - tensor input_13_cast_fp16 = silu(x = add_3_cast_fp16)[name = tensor("input_13_cast_fp16")]; - tensor hidden_states_1_pad_type_0 = const()[name = tensor("hidden_states_1_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_1_pad_0 = const()[name = tensor("hidden_states_1_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_1_strides_0 = const()[name = tensor("hidden_states_1_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_1_dilations_0 = const()[name = tensor("hidden_states_1_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_1_groups_0 = const()[name = tensor("hidden_states_1_groups_0"), val = tensor(1)]; - tensor decoder_mid_block_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4764480)))]; - tensor decoder_mid_block_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9483136)))]; - tensor hidden_states_1_cast_fp16 = conv(bias = decoder_mid_block_resnets_0_conv2_bias_to_fp16, dilations = hidden_states_1_dilations_0, groups = hidden_states_1_groups_0, pad = hidden_states_1_pad_0, pad_type = hidden_states_1_pad_type_0, strides = hidden_states_1_strides_0, weight = decoder_mid_block_resnets_0_conv2_weight_to_fp16, x = input_13_cast_fp16)[name = tensor("hidden_states_1_cast_fp16")]; - tensor var_82_cast_fp16 = add(x = input_3_cast_fp16, y = hidden_states_1_cast_fp16)[name = tensor("op_82_cast_fp16")]; - tensor reshape_8_shape_0 = const()[name = tensor("reshape_8_shape_0"), val = tensor([1, 32, 16, 16384])]; - tensor reshape_8_cast_fp16 = reshape(shape = reshape_8_shape_0, x = var_82_cast_fp16)[name = tensor("reshape_8_cast_fp16")]; - tensor reduce_mean_6_axes_0 = const()[name = tensor("reduce_mean_6_axes_0"), val = tensor([2, 3])]; - tensor reduce_mean_6_keep_dims_0 = const()[name = tensor("reduce_mean_6_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_6_cast_fp16 = reduce_mean(axes = reduce_mean_6_axes_0, keep_dims = reduce_mean_6_keep_dims_0, x = reshape_8_cast_fp16)[name = tensor("reduce_mean_6_cast_fp16")]; - tensor sub_4_cast_fp16 = sub(x = reshape_8_cast_fp16, y = reduce_mean_6_cast_fp16)[name = tensor("sub_4_cast_fp16")]; - tensor square_2_cast_fp16 = square(x = sub_4_cast_fp16)[name = tensor("square_2_cast_fp16")]; - tensor reduce_mean_8_axes_0 = const()[name = tensor("reduce_mean_8_axes_0"), val = tensor([2, 3])]; - tensor reduce_mean_8_keep_dims_0 = const()[name = tensor("reduce_mean_8_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_8_cast_fp16 = reduce_mean(axes = reduce_mean_8_axes_0, keep_dims = reduce_mean_8_keep_dims_0, x = square_2_cast_fp16)[name = tensor("reduce_mean_8_cast_fp16")]; - tensor add_4_y_0_to_fp16 = const()[name = tensor("add_4_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_4_cast_fp16 = add(x = reduce_mean_8_cast_fp16, y = add_4_y_0_to_fp16)[name = tensor("add_4_cast_fp16")]; - tensor sqrt_2_cast_fp16 = sqrt(x = add_4_cast_fp16)[name = tensor("sqrt_2_cast_fp16")]; - tensor real_div_2_cast_fp16 = real_div(x = sub_4_cast_fp16, y = sqrt_2_cast_fp16)[name = tensor("real_div_2_cast_fp16")]; - tensor reshape_9_shape_0 = const()[name = tensor("reshape_9_shape_0"), val = tensor([1, 512, 16384])]; - tensor reshape_9_cast_fp16 = reshape(shape = reshape_9_shape_0, x = real_div_2_cast_fp16)[name = tensor("reshape_9_cast_fp16")]; - tensor reshape_10_to_fp16 = const()[name = tensor("reshape_10_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9484224)))]; - tensor mul_2_cast_fp16 = mul(x = reshape_9_cast_fp16, y = reshape_10_to_fp16)[name = tensor("mul_2_cast_fp16")]; - tensor reshape_11_to_fp16 = const()[name = tensor("reshape_11_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9485312)))]; - tensor add_5_cast_fp16 = add(x = mul_2_cast_fp16, y = reshape_11_to_fp16)[name = tensor("add_5_cast_fp16")]; - tensor input_19_perm_0 = const()[name = tensor("input_19_perm_0"), val = tensor([0, 2, 1])]; - tensor decoder_mid_block_attentions_0_to_q_weight_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9486400)))]; - tensor decoder_mid_block_attentions_0_to_q_bias_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_q_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(10010752)))]; - tensor input_19_cast_fp16 = transpose(perm = input_19_perm_0, x = add_5_cast_fp16)[name = tensor("transpose_11")]; - tensor linear_0_cast_fp16 = linear(bias = decoder_mid_block_attentions_0_to_q_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_q_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("linear_0_cast_fp16")]; - tensor decoder_mid_block_attentions_0_to_k_weight_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(10011840)))]; - tensor decoder_mid_block_attentions_0_to_k_bias_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_k_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(10536192)))]; - tensor linear_1_cast_fp16 = linear(bias = decoder_mid_block_attentions_0_to_k_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_k_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("linear_1_cast_fp16")]; - tensor decoder_mid_block_attentions_0_to_v_weight_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(10537280)))]; - tensor decoder_mid_block_attentions_0_to_v_bias_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_v_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11061632)))]; - tensor linear_2_cast_fp16 = linear(bias = decoder_mid_block_attentions_0_to_v_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_v_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("linear_2_cast_fp16")]; - tensor var_123 = const()[name = tensor("op_123"), val = tensor([1, -1, 1, 512])]; - tensor var_124_cast_fp16 = reshape(shape = var_123, x = linear_0_cast_fp16)[name = tensor("op_124_cast_fp16")]; - tensor var_126 = const()[name = tensor("op_126"), val = tensor([1, -1, 1, 512])]; - tensor var_127_cast_fp16 = reshape(shape = var_126, x = linear_1_cast_fp16)[name = tensor("op_127_cast_fp16")]; - tensor var_129 = const()[name = tensor("op_129"), val = tensor([1, -1, 1, 512])]; - tensor var_130_cast_fp16 = reshape(shape = var_129, x = linear_2_cast_fp16)[name = tensor("op_130_cast_fp16")]; - tensor value_perm_0 = const()[name = tensor("value_perm_0"), val = tensor([0, 2, 1, 3])]; - tensor mul_3_y_0_to_fp16 = const()[name = tensor("mul_3_y_0_to_fp16"), val = tensor(0x1.6ap-5)]; - tensor mul_3_cast_fp16 = mul(x = var_124_cast_fp16, y = mul_3_y_0_to_fp16)[name = tensor("mul_3_cast_fp16")]; - tensor matmul_0_transpose_y_0 = const()[name = tensor("matmul_0_transpose_y_0"), val = tensor(true)]; - tensor matmul_0_transpose_x_0 = const()[name = tensor("matmul_0_transpose_x_0"), val = tensor(false)]; - tensor transpose_4_perm_0 = const()[name = tensor("transpose_4_perm_0"), val = tensor([0, 2, -3, -1])]; - tensor transpose_5_perm_0 = const()[name = tensor("transpose_5_perm_0"), val = tensor([0, 2, -3, -1])]; - tensor transpose_5 = transpose(perm = transpose_5_perm_0, x = var_127_cast_fp16)[name = tensor("transpose_8")]; - tensor transpose_4 = transpose(perm = transpose_4_perm_0, x = mul_3_cast_fp16)[name = tensor("transpose_9")]; - tensor matmul_0_cast_fp16 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = transpose_4, y = transpose_5)[name = tensor("matmul_0_cast_fp16")]; - tensor softmax_0_axis_0 = const()[name = tensor("softmax_0_axis_0"), val = tensor(-1)]; - tensor softmax_0_cast_fp16 = softmax(axis = softmax_0_axis_0, x = matmul_0_cast_fp16)[name = tensor("softmax_0_cast_fp16")]; - tensor hidden_states_7_transpose_x_0 = const()[name = tensor("hidden_states_7_transpose_x_0"), val = tensor(false)]; - tensor hidden_states_7_transpose_y_0 = const()[name = tensor("hidden_states_7_transpose_y_0"), val = tensor(false)]; - tensor value_cast_fp16 = transpose(perm = value_perm_0, x = var_130_cast_fp16)[name = tensor("transpose_10")]; - tensor hidden_states_7_cast_fp16 = matmul(transpose_x = hidden_states_7_transpose_x_0, transpose_y = hidden_states_7_transpose_y_0, x = softmax_0_cast_fp16, y = value_cast_fp16)[name = tensor("hidden_states_7_cast_fp16")]; - tensor var_133_perm_0 = const()[name = tensor("op_133_perm_0"), val = tensor([0, 2, 1, 3])]; - tensor var_137 = const()[name = tensor("op_137"), val = tensor([1, -1, 512])]; - tensor var_133_cast_fp16 = transpose(perm = var_133_perm_0, x = hidden_states_7_cast_fp16)[name = tensor("transpose_7")]; - tensor hidden_states_9_cast_fp16 = reshape(shape = var_137, x = var_133_cast_fp16)[name = tensor("hidden_states_9_cast_fp16")]; - tensor decoder_mid_block_attentions_0_to_out_0_weight_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_out_0_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11062720)))]; - tensor decoder_mid_block_attentions_0_to_out_0_bias_to_fp16 = const()[name = tensor("decoder_mid_block_attentions_0_to_out_0_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11587072)))]; - tensor linear_3_cast_fp16 = linear(bias = decoder_mid_block_attentions_0_to_out_0_bias_to_fp16, weight = decoder_mid_block_attentions_0_to_out_0_weight_to_fp16, x = hidden_states_9_cast_fp16)[name = tensor("linear_3_cast_fp16")]; - tensor var_144_perm_0 = const()[name = tensor("op_144_perm_0"), val = tensor([0, -1, -2])]; - tensor var_145 = const()[name = tensor("op_145"), val = tensor([1, 512, 128, 128])]; - tensor var_144_cast_fp16 = transpose(perm = var_144_perm_0, x = linear_3_cast_fp16)[name = tensor("transpose_6")]; - tensor hidden_states_13_cast_fp16 = reshape(shape = var_145, x = var_144_cast_fp16)[name = tensor("hidden_states_13_cast_fp16")]; - tensor hidden_states_15_cast_fp16 = add(x = hidden_states_13_cast_fp16, y = var_82_cast_fp16)[name = tensor("hidden_states_15_cast_fp16")]; - tensor reshape_12_shape_0 = const()[name = tensor("reshape_12_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_12_cast_fp16 = reshape(shape = reshape_12_shape_0, x = hidden_states_15_cast_fp16)[name = tensor("reshape_12_cast_fp16")]; - tensor reduce_mean_9_axes_0 = const()[name = tensor("reduce_mean_9_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_9_keep_dims_0 = const()[name = tensor("reduce_mean_9_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_9_cast_fp16 = reduce_mean(axes = reduce_mean_9_axes_0, keep_dims = reduce_mean_9_keep_dims_0, x = reshape_12_cast_fp16)[name = tensor("reduce_mean_9_cast_fp16")]; - tensor sub_6_cast_fp16 = sub(x = reshape_12_cast_fp16, y = reduce_mean_9_cast_fp16)[name = tensor("sub_6_cast_fp16")]; - tensor square_3_cast_fp16 = square(x = sub_6_cast_fp16)[name = tensor("square_3_cast_fp16")]; - tensor reduce_mean_11_axes_0 = const()[name = tensor("reduce_mean_11_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_11_keep_dims_0 = const()[name = tensor("reduce_mean_11_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_11_cast_fp16 = reduce_mean(axes = reduce_mean_11_axes_0, keep_dims = reduce_mean_11_keep_dims_0, x = square_3_cast_fp16)[name = tensor("reduce_mean_11_cast_fp16")]; - tensor add_6_y_0_to_fp16 = const()[name = tensor("add_6_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_6_cast_fp16 = add(x = reduce_mean_11_cast_fp16, y = add_6_y_0_to_fp16)[name = tensor("add_6_cast_fp16")]; - tensor sqrt_3_cast_fp16 = sqrt(x = add_6_cast_fp16)[name = tensor("sqrt_3_cast_fp16")]; - tensor real_div_3_cast_fp16 = real_div(x = sub_6_cast_fp16, y = sqrt_3_cast_fp16)[name = tensor("real_div_3_cast_fp16")]; - tensor reshape_13_shape_0 = const()[name = tensor("reshape_13_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_13_cast_fp16 = reshape(shape = reshape_13_shape_0, x = real_div_3_cast_fp16)[name = tensor("reshape_13_cast_fp16")]; - tensor add_7_gamma_0_to_fp16 = const()[name = tensor("add_7_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11588160)))]; - tensor add_7_beta_0_to_fp16 = const()[name = tensor("add_7_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11589248)))]; - tensor add_7_epsilon_0_to_fp16 = const()[name = tensor("add_7_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_7_cast_fp16 = batch_norm(beta = add_7_beta_0_to_fp16, epsilon = add_7_epsilon_0_to_fp16, gamma = add_7_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_13_cast_fp16)[name = tensor("add_7_cast_fp16")]; - tensor input_29_cast_fp16 = silu(x = add_7_cast_fp16)[name = tensor("input_29_cast_fp16")]; - tensor input_31_pad_type_0 = const()[name = tensor("input_31_pad_type_0"), val = tensor("custom")]; - tensor input_31_pad_0 = const()[name = tensor("input_31_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_31_strides_0 = const()[name = tensor("input_31_strides_0"), val = tensor([1, 1])]; - tensor input_31_dilations_0 = const()[name = tensor("input_31_dilations_0"), val = tensor([1, 1])]; - tensor input_31_groups_0 = const()[name = tensor("input_31_groups_0"), val = tensor(1)]; - tensor decoder_mid_block_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11590336)))]; - tensor decoder_mid_block_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16308992)))]; - tensor input_31_cast_fp16 = conv(bias = decoder_mid_block_resnets_1_conv1_bias_to_fp16, dilations = input_31_dilations_0, groups = input_31_groups_0, pad = input_31_pad_0, pad_type = input_31_pad_type_0, strides = input_31_strides_0, weight = decoder_mid_block_resnets_1_conv1_weight_to_fp16, x = input_29_cast_fp16)[name = tensor("input_31_cast_fp16")]; - tensor reshape_16_shape_0 = const()[name = tensor("reshape_16_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_16_cast_fp16 = reshape(shape = reshape_16_shape_0, x = input_31_cast_fp16)[name = tensor("reshape_16_cast_fp16")]; - tensor reduce_mean_12_axes_0 = const()[name = tensor("reduce_mean_12_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_12_keep_dims_0 = const()[name = tensor("reduce_mean_12_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_12_cast_fp16 = reduce_mean(axes = reduce_mean_12_axes_0, keep_dims = reduce_mean_12_keep_dims_0, x = reshape_16_cast_fp16)[name = tensor("reduce_mean_12_cast_fp16")]; - tensor sub_8_cast_fp16 = sub(x = reshape_16_cast_fp16, y = reduce_mean_12_cast_fp16)[name = tensor("sub_8_cast_fp16")]; - tensor square_4_cast_fp16 = square(x = sub_8_cast_fp16)[name = tensor("square_4_cast_fp16")]; - tensor reduce_mean_14_axes_0 = const()[name = tensor("reduce_mean_14_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_14_keep_dims_0 = const()[name = tensor("reduce_mean_14_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_14_cast_fp16 = reduce_mean(axes = reduce_mean_14_axes_0, keep_dims = reduce_mean_14_keep_dims_0, x = square_4_cast_fp16)[name = tensor("reduce_mean_14_cast_fp16")]; - tensor add_8_y_0_to_fp16 = const()[name = tensor("add_8_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_8_cast_fp16 = add(x = reduce_mean_14_cast_fp16, y = add_8_y_0_to_fp16)[name = tensor("add_8_cast_fp16")]; - tensor sqrt_4_cast_fp16 = sqrt(x = add_8_cast_fp16)[name = tensor("sqrt_4_cast_fp16")]; - tensor real_div_4_cast_fp16 = real_div(x = sub_8_cast_fp16, y = sqrt_4_cast_fp16)[name = tensor("real_div_4_cast_fp16")]; - tensor reshape_17_shape_0 = const()[name = tensor("reshape_17_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_17_cast_fp16 = reshape(shape = reshape_17_shape_0, x = real_div_4_cast_fp16)[name = tensor("reshape_17_cast_fp16")]; - tensor add_9_gamma_0_to_fp16 = const()[name = tensor("add_9_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16310080)))]; - tensor add_9_beta_0_to_fp16 = const()[name = tensor("add_9_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16311168)))]; - tensor add_9_epsilon_0_to_fp16 = const()[name = tensor("add_9_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_9_cast_fp16 = batch_norm(beta = add_9_beta_0_to_fp16, epsilon = add_9_epsilon_0_to_fp16, gamma = add_9_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_17_cast_fp16)[name = tensor("add_9_cast_fp16")]; - tensor input_35_cast_fp16 = silu(x = add_9_cast_fp16)[name = tensor("input_35_cast_fp16")]; - tensor hidden_states_17_pad_type_0 = const()[name = tensor("hidden_states_17_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_17_pad_0 = const()[name = tensor("hidden_states_17_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_17_strides_0 = const()[name = tensor("hidden_states_17_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_17_dilations_0 = const()[name = tensor("hidden_states_17_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_17_groups_0 = const()[name = tensor("hidden_states_17_groups_0"), val = tensor(1)]; - tensor decoder_mid_block_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16312256)))]; - tensor decoder_mid_block_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("decoder_mid_block_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(21030912)))]; - tensor hidden_states_17_cast_fp16 = conv(bias = decoder_mid_block_resnets_1_conv2_bias_to_fp16, dilations = hidden_states_17_dilations_0, groups = hidden_states_17_groups_0, pad = hidden_states_17_pad_0, pad_type = hidden_states_17_pad_type_0, strides = hidden_states_17_strides_0, weight = decoder_mid_block_resnets_1_conv2_weight_to_fp16, x = input_35_cast_fp16)[name = tensor("hidden_states_17_cast_fp16")]; - tensor var_177_cast_fp16 = add(x = hidden_states_15_cast_fp16, y = hidden_states_17_cast_fp16)[name = tensor("op_177_cast_fp16")]; - tensor reshape_20_shape_0 = const()[name = tensor("reshape_20_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_20_cast_fp16 = reshape(shape = reshape_20_shape_0, x = var_177_cast_fp16)[name = tensor("reshape_20_cast_fp16")]; - tensor reduce_mean_15_axes_0 = const()[name = tensor("reduce_mean_15_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_15_keep_dims_0 = const()[name = tensor("reduce_mean_15_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_15_cast_fp16 = reduce_mean(axes = reduce_mean_15_axes_0, keep_dims = reduce_mean_15_keep_dims_0, x = reshape_20_cast_fp16)[name = tensor("reduce_mean_15_cast_fp16")]; - tensor sub_10_cast_fp16 = sub(x = reshape_20_cast_fp16, y = reduce_mean_15_cast_fp16)[name = tensor("sub_10_cast_fp16")]; - tensor square_5_cast_fp16 = square(x = sub_10_cast_fp16)[name = tensor("square_5_cast_fp16")]; - tensor reduce_mean_17_axes_0 = const()[name = tensor("reduce_mean_17_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_17_keep_dims_0 = const()[name = tensor("reduce_mean_17_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_17_cast_fp16 = reduce_mean(axes = reduce_mean_17_axes_0, keep_dims = reduce_mean_17_keep_dims_0, x = square_5_cast_fp16)[name = tensor("reduce_mean_17_cast_fp16")]; - tensor add_10_y_0_to_fp16 = const()[name = tensor("add_10_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_10_cast_fp16 = add(x = reduce_mean_17_cast_fp16, y = add_10_y_0_to_fp16)[name = tensor("add_10_cast_fp16")]; - tensor sqrt_5_cast_fp16 = sqrt(x = add_10_cast_fp16)[name = tensor("sqrt_5_cast_fp16")]; - tensor real_div_5_cast_fp16 = real_div(x = sub_10_cast_fp16, y = sqrt_5_cast_fp16)[name = tensor("real_div_5_cast_fp16")]; - tensor reshape_21_shape_0 = const()[name = tensor("reshape_21_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_21_cast_fp16 = reshape(shape = reshape_21_shape_0, x = real_div_5_cast_fp16)[name = tensor("reshape_21_cast_fp16")]; - tensor add_11_gamma_0_to_fp16 = const()[name = tensor("add_11_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(21032000)))]; - tensor add_11_beta_0_to_fp16 = const()[name = tensor("add_11_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(21033088)))]; - tensor add_11_epsilon_0_to_fp16 = const()[name = tensor("add_11_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_11_cast_fp16 = batch_norm(beta = add_11_beta_0_to_fp16, epsilon = add_11_epsilon_0_to_fp16, gamma = add_11_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_21_cast_fp16)[name = tensor("add_11_cast_fp16")]; - tensor input_43_cast_fp16 = silu(x = add_11_cast_fp16)[name = tensor("input_43_cast_fp16")]; - tensor input_45_pad_type_0 = const()[name = tensor("input_45_pad_type_0"), val = tensor("custom")]; - tensor input_45_pad_0 = const()[name = tensor("input_45_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_45_strides_0 = const()[name = tensor("input_45_strides_0"), val = tensor([1, 1])]; - tensor input_45_dilations_0 = const()[name = tensor("input_45_dilations_0"), val = tensor([1, 1])]; - tensor input_45_groups_0 = const()[name = tensor("input_45_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(21034176)))]; - tensor decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25752832)))]; - tensor input_45_cast_fp16 = conv(bias = decoder_up_blocks_0_resnets_0_conv1_bias_to_fp16, dilations = input_45_dilations_0, groups = input_45_groups_0, pad = input_45_pad_0, pad_type = input_45_pad_type_0, strides = input_45_strides_0, weight = decoder_up_blocks_0_resnets_0_conv1_weight_to_fp16, x = input_43_cast_fp16)[name = tensor("input_45_cast_fp16")]; - tensor reshape_24_shape_0 = const()[name = tensor("reshape_24_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_24_cast_fp16 = reshape(shape = reshape_24_shape_0, x = input_45_cast_fp16)[name = tensor("reshape_24_cast_fp16")]; - tensor reduce_mean_18_axes_0 = const()[name = tensor("reduce_mean_18_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_18_keep_dims_0 = const()[name = tensor("reduce_mean_18_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_18_cast_fp16 = reduce_mean(axes = reduce_mean_18_axes_0, keep_dims = reduce_mean_18_keep_dims_0, x = reshape_24_cast_fp16)[name = tensor("reduce_mean_18_cast_fp16")]; - tensor sub_12_cast_fp16 = sub(x = reshape_24_cast_fp16, y = reduce_mean_18_cast_fp16)[name = tensor("sub_12_cast_fp16")]; - tensor square_6_cast_fp16 = square(x = sub_12_cast_fp16)[name = tensor("square_6_cast_fp16")]; - tensor reduce_mean_20_axes_0 = const()[name = tensor("reduce_mean_20_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_20_keep_dims_0 = const()[name = tensor("reduce_mean_20_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_20_cast_fp16 = reduce_mean(axes = reduce_mean_20_axes_0, keep_dims = reduce_mean_20_keep_dims_0, x = square_6_cast_fp16)[name = tensor("reduce_mean_20_cast_fp16")]; - tensor add_12_y_0_to_fp16 = const()[name = tensor("add_12_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_12_cast_fp16 = add(x = reduce_mean_20_cast_fp16, y = add_12_y_0_to_fp16)[name = tensor("add_12_cast_fp16")]; - tensor sqrt_6_cast_fp16 = sqrt(x = add_12_cast_fp16)[name = tensor("sqrt_6_cast_fp16")]; - tensor real_div_6_cast_fp16 = real_div(x = sub_12_cast_fp16, y = sqrt_6_cast_fp16)[name = tensor("real_div_6_cast_fp16")]; - tensor reshape_25_shape_0 = const()[name = tensor("reshape_25_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_25_cast_fp16 = reshape(shape = reshape_25_shape_0, x = real_div_6_cast_fp16)[name = tensor("reshape_25_cast_fp16")]; - tensor add_13_gamma_0_to_fp16 = const()[name = tensor("add_13_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25753920)))]; - tensor add_13_beta_0_to_fp16 = const()[name = tensor("add_13_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25755008)))]; - tensor add_13_epsilon_0_to_fp16 = const()[name = tensor("add_13_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_13_cast_fp16 = batch_norm(beta = add_13_beta_0_to_fp16, epsilon = add_13_epsilon_0_to_fp16, gamma = add_13_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_25_cast_fp16)[name = tensor("add_13_cast_fp16")]; - tensor input_49_cast_fp16 = silu(x = add_13_cast_fp16)[name = tensor("input_49_cast_fp16")]; - tensor hidden_states_19_pad_type_0 = const()[name = tensor("hidden_states_19_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_19_pad_0 = const()[name = tensor("hidden_states_19_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_19_strides_0 = const()[name = tensor("hidden_states_19_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_19_dilations_0 = const()[name = tensor("hidden_states_19_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_19_groups_0 = const()[name = tensor("hidden_states_19_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(25756096)))]; - tensor decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(30474752)))]; - tensor hidden_states_19_cast_fp16 = conv(bias = decoder_up_blocks_0_resnets_0_conv2_bias_to_fp16, dilations = hidden_states_19_dilations_0, groups = hidden_states_19_groups_0, pad = hidden_states_19_pad_0, pad_type = hidden_states_19_pad_type_0, strides = hidden_states_19_strides_0, weight = decoder_up_blocks_0_resnets_0_conv2_weight_to_fp16, x = input_49_cast_fp16)[name = tensor("hidden_states_19_cast_fp16")]; - tensor var_216_cast_fp16 = add(x = var_177_cast_fp16, y = hidden_states_19_cast_fp16)[name = tensor("op_216_cast_fp16")]; - tensor reshape_28_shape_0 = const()[name = tensor("reshape_28_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_28_cast_fp16 = reshape(shape = reshape_28_shape_0, x = var_216_cast_fp16)[name = tensor("reshape_28_cast_fp16")]; - tensor reduce_mean_21_axes_0 = const()[name = tensor("reduce_mean_21_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_21_keep_dims_0 = const()[name = tensor("reduce_mean_21_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_21_cast_fp16 = reduce_mean(axes = reduce_mean_21_axes_0, keep_dims = reduce_mean_21_keep_dims_0, x = reshape_28_cast_fp16)[name = tensor("reduce_mean_21_cast_fp16")]; - tensor sub_14_cast_fp16 = sub(x = reshape_28_cast_fp16, y = reduce_mean_21_cast_fp16)[name = tensor("sub_14_cast_fp16")]; - tensor square_7_cast_fp16 = square(x = sub_14_cast_fp16)[name = tensor("square_7_cast_fp16")]; - tensor reduce_mean_23_axes_0 = const()[name = tensor("reduce_mean_23_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_23_keep_dims_0 = const()[name = tensor("reduce_mean_23_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_23_cast_fp16 = reduce_mean(axes = reduce_mean_23_axes_0, keep_dims = reduce_mean_23_keep_dims_0, x = square_7_cast_fp16)[name = tensor("reduce_mean_23_cast_fp16")]; - tensor add_14_y_0_to_fp16 = const()[name = tensor("add_14_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_14_cast_fp16 = add(x = reduce_mean_23_cast_fp16, y = add_14_y_0_to_fp16)[name = tensor("add_14_cast_fp16")]; - tensor sqrt_7_cast_fp16 = sqrt(x = add_14_cast_fp16)[name = tensor("sqrt_7_cast_fp16")]; - tensor real_div_7_cast_fp16 = real_div(x = sub_14_cast_fp16, y = sqrt_7_cast_fp16)[name = tensor("real_div_7_cast_fp16")]; - tensor reshape_29_shape_0 = const()[name = tensor("reshape_29_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_29_cast_fp16 = reshape(shape = reshape_29_shape_0, x = real_div_7_cast_fp16)[name = tensor("reshape_29_cast_fp16")]; - tensor add_15_gamma_0_to_fp16 = const()[name = tensor("add_15_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(30475840)))]; - tensor add_15_beta_0_to_fp16 = const()[name = tensor("add_15_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(30476928)))]; - tensor add_15_epsilon_0_to_fp16 = const()[name = tensor("add_15_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_15_cast_fp16 = batch_norm(beta = add_15_beta_0_to_fp16, epsilon = add_15_epsilon_0_to_fp16, gamma = add_15_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_29_cast_fp16)[name = tensor("add_15_cast_fp16")]; - tensor input_57_cast_fp16 = silu(x = add_15_cast_fp16)[name = tensor("input_57_cast_fp16")]; - tensor input_59_pad_type_0 = const()[name = tensor("input_59_pad_type_0"), val = tensor("custom")]; - tensor input_59_pad_0 = const()[name = tensor("input_59_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_59_strides_0 = const()[name = tensor("input_59_strides_0"), val = tensor([1, 1])]; - tensor input_59_dilations_0 = const()[name = tensor("input_59_dilations_0"), val = tensor([1, 1])]; - tensor input_59_groups_0 = const()[name = tensor("input_59_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(30478016)))]; - tensor decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35196672)))]; - tensor input_59_cast_fp16 = conv(bias = decoder_up_blocks_0_resnets_1_conv1_bias_to_fp16, dilations = input_59_dilations_0, groups = input_59_groups_0, pad = input_59_pad_0, pad_type = input_59_pad_type_0, strides = input_59_strides_0, weight = decoder_up_blocks_0_resnets_1_conv1_weight_to_fp16, x = input_57_cast_fp16)[name = tensor("input_59_cast_fp16")]; - tensor reshape_32_shape_0 = const()[name = tensor("reshape_32_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_32_cast_fp16 = reshape(shape = reshape_32_shape_0, x = input_59_cast_fp16)[name = tensor("reshape_32_cast_fp16")]; - tensor reduce_mean_24_axes_0 = const()[name = tensor("reduce_mean_24_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_24_keep_dims_0 = const()[name = tensor("reduce_mean_24_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_24_cast_fp16 = reduce_mean(axes = reduce_mean_24_axes_0, keep_dims = reduce_mean_24_keep_dims_0, x = reshape_32_cast_fp16)[name = tensor("reduce_mean_24_cast_fp16")]; - tensor sub_16_cast_fp16 = sub(x = reshape_32_cast_fp16, y = reduce_mean_24_cast_fp16)[name = tensor("sub_16_cast_fp16")]; - tensor square_8_cast_fp16 = square(x = sub_16_cast_fp16)[name = tensor("square_8_cast_fp16")]; - tensor reduce_mean_26_axes_0 = const()[name = tensor("reduce_mean_26_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_26_keep_dims_0 = const()[name = tensor("reduce_mean_26_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_26_cast_fp16 = reduce_mean(axes = reduce_mean_26_axes_0, keep_dims = reduce_mean_26_keep_dims_0, x = square_8_cast_fp16)[name = tensor("reduce_mean_26_cast_fp16")]; - tensor add_16_y_0_to_fp16 = const()[name = tensor("add_16_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_16_cast_fp16 = add(x = reduce_mean_26_cast_fp16, y = add_16_y_0_to_fp16)[name = tensor("add_16_cast_fp16")]; - tensor sqrt_8_cast_fp16 = sqrt(x = add_16_cast_fp16)[name = tensor("sqrt_8_cast_fp16")]; - tensor real_div_8_cast_fp16 = real_div(x = sub_16_cast_fp16, y = sqrt_8_cast_fp16)[name = tensor("real_div_8_cast_fp16")]; - tensor reshape_33_shape_0 = const()[name = tensor("reshape_33_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_33_cast_fp16 = reshape(shape = reshape_33_shape_0, x = real_div_8_cast_fp16)[name = tensor("reshape_33_cast_fp16")]; - tensor add_17_gamma_0_to_fp16 = const()[name = tensor("add_17_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35197760)))]; - tensor add_17_beta_0_to_fp16 = const()[name = tensor("add_17_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35198848)))]; - tensor add_17_epsilon_0_to_fp16 = const()[name = tensor("add_17_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_17_cast_fp16 = batch_norm(beta = add_17_beta_0_to_fp16, epsilon = add_17_epsilon_0_to_fp16, gamma = add_17_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_33_cast_fp16)[name = tensor("add_17_cast_fp16")]; - tensor input_63_cast_fp16 = silu(x = add_17_cast_fp16)[name = tensor("input_63_cast_fp16")]; - tensor hidden_states_21_pad_type_0 = const()[name = tensor("hidden_states_21_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_21_pad_0 = const()[name = tensor("hidden_states_21_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_21_strides_0 = const()[name = tensor("hidden_states_21_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_21_dilations_0 = const()[name = tensor("hidden_states_21_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_21_groups_0 = const()[name = tensor("hidden_states_21_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35199936)))]; - tensor decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39918592)))]; - tensor hidden_states_21_cast_fp16 = conv(bias = decoder_up_blocks_0_resnets_1_conv2_bias_to_fp16, dilations = hidden_states_21_dilations_0, groups = hidden_states_21_groups_0, pad = hidden_states_21_pad_0, pad_type = hidden_states_21_pad_type_0, strides = hidden_states_21_strides_0, weight = decoder_up_blocks_0_resnets_1_conv2_weight_to_fp16, x = input_63_cast_fp16)[name = tensor("hidden_states_21_cast_fp16")]; - tensor var_246_cast_fp16 = add(x = var_216_cast_fp16, y = hidden_states_21_cast_fp16)[name = tensor("op_246_cast_fp16")]; - tensor reshape_36_shape_0 = const()[name = tensor("reshape_36_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_36_cast_fp16 = reshape(shape = reshape_36_shape_0, x = var_246_cast_fp16)[name = tensor("reshape_36_cast_fp16")]; - tensor reduce_mean_27_axes_0 = const()[name = tensor("reduce_mean_27_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_27_keep_dims_0 = const()[name = tensor("reduce_mean_27_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_27_cast_fp16 = reduce_mean(axes = reduce_mean_27_axes_0, keep_dims = reduce_mean_27_keep_dims_0, x = reshape_36_cast_fp16)[name = tensor("reduce_mean_27_cast_fp16")]; - tensor sub_18_cast_fp16 = sub(x = reshape_36_cast_fp16, y = reduce_mean_27_cast_fp16)[name = tensor("sub_18_cast_fp16")]; - tensor square_9_cast_fp16 = square(x = sub_18_cast_fp16)[name = tensor("square_9_cast_fp16")]; - tensor reduce_mean_29_axes_0 = const()[name = tensor("reduce_mean_29_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_29_keep_dims_0 = const()[name = tensor("reduce_mean_29_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_29_cast_fp16 = reduce_mean(axes = reduce_mean_29_axes_0, keep_dims = reduce_mean_29_keep_dims_0, x = square_9_cast_fp16)[name = tensor("reduce_mean_29_cast_fp16")]; - tensor add_18_y_0_to_fp16 = const()[name = tensor("add_18_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_18_cast_fp16 = add(x = reduce_mean_29_cast_fp16, y = add_18_y_0_to_fp16)[name = tensor("add_18_cast_fp16")]; - tensor sqrt_9_cast_fp16 = sqrt(x = add_18_cast_fp16)[name = tensor("sqrt_9_cast_fp16")]; - tensor real_div_9_cast_fp16 = real_div(x = sub_18_cast_fp16, y = sqrt_9_cast_fp16)[name = tensor("real_div_9_cast_fp16")]; - tensor reshape_37_shape_0 = const()[name = tensor("reshape_37_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_37_cast_fp16 = reshape(shape = reshape_37_shape_0, x = real_div_9_cast_fp16)[name = tensor("reshape_37_cast_fp16")]; - tensor add_19_gamma_0_to_fp16 = const()[name = tensor("add_19_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39919680)))]; - tensor add_19_beta_0_to_fp16 = const()[name = tensor("add_19_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39920768)))]; - tensor add_19_epsilon_0_to_fp16 = const()[name = tensor("add_19_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_19_cast_fp16 = batch_norm(beta = add_19_beta_0_to_fp16, epsilon = add_19_epsilon_0_to_fp16, gamma = add_19_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_37_cast_fp16)[name = tensor("add_19_cast_fp16")]; - tensor input_71_cast_fp16 = silu(x = add_19_cast_fp16)[name = tensor("input_71_cast_fp16")]; - tensor input_73_pad_type_0 = const()[name = tensor("input_73_pad_type_0"), val = tensor("custom")]; - tensor input_73_pad_0 = const()[name = tensor("input_73_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_73_strides_0 = const()[name = tensor("input_73_strides_0"), val = tensor([1, 1])]; - tensor input_73_dilations_0 = const()[name = tensor("input_73_dilations_0"), val = tensor([1, 1])]; - tensor input_73_groups_0 = const()[name = tensor("input_73_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39921856)))]; - tensor decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44640512)))]; - tensor input_73_cast_fp16 = conv(bias = decoder_up_blocks_0_resnets_2_conv1_bias_to_fp16, dilations = input_73_dilations_0, groups = input_73_groups_0, pad = input_73_pad_0, pad_type = input_73_pad_type_0, strides = input_73_strides_0, weight = decoder_up_blocks_0_resnets_2_conv1_weight_to_fp16, x = input_71_cast_fp16)[name = tensor("input_73_cast_fp16")]; - tensor reshape_40_shape_0 = const()[name = tensor("reshape_40_shape_0"), val = tensor([1, 32, 16, 128, 128])]; - tensor reshape_40_cast_fp16 = reshape(shape = reshape_40_shape_0, x = input_73_cast_fp16)[name = tensor("reshape_40_cast_fp16")]; - tensor reduce_mean_30_axes_0 = const()[name = tensor("reduce_mean_30_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_30_keep_dims_0 = const()[name = tensor("reduce_mean_30_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_30_cast_fp16 = reduce_mean(axes = reduce_mean_30_axes_0, keep_dims = reduce_mean_30_keep_dims_0, x = reshape_40_cast_fp16)[name = tensor("reduce_mean_30_cast_fp16")]; - tensor sub_20_cast_fp16 = sub(x = reshape_40_cast_fp16, y = reduce_mean_30_cast_fp16)[name = tensor("sub_20_cast_fp16")]; - tensor square_10_cast_fp16 = square(x = sub_20_cast_fp16)[name = tensor("square_10_cast_fp16")]; - tensor reduce_mean_32_axes_0 = const()[name = tensor("reduce_mean_32_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_32_keep_dims_0 = const()[name = tensor("reduce_mean_32_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_32_cast_fp16 = reduce_mean(axes = reduce_mean_32_axes_0, keep_dims = reduce_mean_32_keep_dims_0, x = square_10_cast_fp16)[name = tensor("reduce_mean_32_cast_fp16")]; - tensor add_20_y_0_to_fp16 = const()[name = tensor("add_20_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_20_cast_fp16 = add(x = reduce_mean_32_cast_fp16, y = add_20_y_0_to_fp16)[name = tensor("add_20_cast_fp16")]; - tensor sqrt_10_cast_fp16 = sqrt(x = add_20_cast_fp16)[name = tensor("sqrt_10_cast_fp16")]; - tensor real_div_10_cast_fp16 = real_div(x = sub_20_cast_fp16, y = sqrt_10_cast_fp16)[name = tensor("real_div_10_cast_fp16")]; - tensor reshape_41_shape_0 = const()[name = tensor("reshape_41_shape_0"), val = tensor([1, 512, 128, 128])]; - tensor reshape_41_cast_fp16 = reshape(shape = reshape_41_shape_0, x = real_div_10_cast_fp16)[name = tensor("reshape_41_cast_fp16")]; - tensor add_21_gamma_0_to_fp16 = const()[name = tensor("add_21_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44641600)))]; - tensor add_21_beta_0_to_fp16 = const()[name = tensor("add_21_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44642688)))]; - tensor add_21_epsilon_0_to_fp16 = const()[name = tensor("add_21_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_21_cast_fp16 = batch_norm(beta = add_21_beta_0_to_fp16, epsilon = add_21_epsilon_0_to_fp16, gamma = add_21_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_41_cast_fp16)[name = tensor("add_21_cast_fp16")]; - tensor input_77_cast_fp16 = silu(x = add_21_cast_fp16)[name = tensor("input_77_cast_fp16")]; - tensor hidden_states_23_pad_type_0 = const()[name = tensor("hidden_states_23_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_23_pad_0 = const()[name = tensor("hidden_states_23_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_23_strides_0 = const()[name = tensor("hidden_states_23_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_23_dilations_0 = const()[name = tensor("hidden_states_23_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_23_groups_0 = const()[name = tensor("hidden_states_23_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44643776)))]; - tensor decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49362432)))]; - tensor hidden_states_23_cast_fp16 = conv(bias = decoder_up_blocks_0_resnets_2_conv2_bias_to_fp16, dilations = hidden_states_23_dilations_0, groups = hidden_states_23_groups_0, pad = hidden_states_23_pad_0, pad_type = hidden_states_23_pad_type_0, strides = hidden_states_23_strides_0, weight = decoder_up_blocks_0_resnets_2_conv2_weight_to_fp16, x = input_77_cast_fp16)[name = tensor("hidden_states_23_cast_fp16")]; - tensor var_276_cast_fp16 = add(x = var_246_cast_fp16, y = hidden_states_23_cast_fp16)[name = tensor("op_276_cast_fp16")]; - tensor input_81_scale_factor_height_0 = const()[name = tensor("input_81_scale_factor_height_0"), val = tensor(0x1p+1)]; - tensor input_81_scale_factor_width_0 = const()[name = tensor("input_81_scale_factor_width_0"), val = tensor(0x1p+1)]; - tensor input_81_cast_fp16 = upsample_nearest_neighbor(scale_factor_height = input_81_scale_factor_height_0, scale_factor_width = input_81_scale_factor_width_0, x = var_276_cast_fp16)[name = tensor("input_81_cast_fp16")]; - tensor input_83_pad_type_0 = const()[name = tensor("input_83_pad_type_0"), val = tensor("custom")]; - tensor input_83_pad_0 = const()[name = tensor("input_83_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_83_strides_0 = const()[name = tensor("input_83_strides_0"), val = tensor([1, 1])]; - tensor input_83_dilations_0 = const()[name = tensor("input_83_dilations_0"), val = tensor([1, 1])]; - tensor input_83_groups_0 = const()[name = tensor("input_83_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49363520)))]; - tensor decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54082176)))]; - tensor input_83_cast_fp16 = conv(bias = decoder_up_blocks_0_upsamplers_0_conv_bias_to_fp16, dilations = input_83_dilations_0, groups = input_83_groups_0, pad = input_83_pad_0, pad_type = input_83_pad_type_0, strides = input_83_strides_0, weight = decoder_up_blocks_0_upsamplers_0_conv_weight_to_fp16, x = input_81_cast_fp16)[name = tensor("input_83_cast_fp16")]; - tensor reshape_44_shape_0 = const()[name = tensor("reshape_44_shape_0"), val = tensor([1, 32, 16, 256, 256])]; - tensor reshape_44_cast_fp16 = reshape(shape = reshape_44_shape_0, x = input_83_cast_fp16)[name = tensor("reshape_44_cast_fp16")]; - tensor reduce_mean_33_axes_0 = const()[name = tensor("reduce_mean_33_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_33_keep_dims_0 = const()[name = tensor("reduce_mean_33_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_33_cast_fp16 = reduce_mean(axes = reduce_mean_33_axes_0, keep_dims = reduce_mean_33_keep_dims_0, x = reshape_44_cast_fp16)[name = tensor("reduce_mean_33_cast_fp16")]; - tensor sub_22_cast_fp16 = sub(x = reshape_44_cast_fp16, y = reduce_mean_33_cast_fp16)[name = tensor("sub_22_cast_fp16")]; - tensor square_11_cast_fp16 = square(x = sub_22_cast_fp16)[name = tensor("square_11_cast_fp16")]; - tensor reduce_mean_35_axes_0 = const()[name = tensor("reduce_mean_35_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_35_keep_dims_0 = const()[name = tensor("reduce_mean_35_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_35_cast_fp16 = reduce_mean(axes = reduce_mean_35_axes_0, keep_dims = reduce_mean_35_keep_dims_0, x = square_11_cast_fp16)[name = tensor("reduce_mean_35_cast_fp16")]; - tensor add_22_y_0_to_fp16 = const()[name = tensor("add_22_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_22_cast_fp16 = add(x = reduce_mean_35_cast_fp16, y = add_22_y_0_to_fp16)[name = tensor("add_22_cast_fp16")]; - tensor sqrt_11_cast_fp16 = sqrt(x = add_22_cast_fp16)[name = tensor("sqrt_11_cast_fp16")]; - tensor real_div_11_cast_fp16 = real_div(x = sub_22_cast_fp16, y = sqrt_11_cast_fp16)[name = tensor("real_div_11_cast_fp16")]; - tensor reshape_45_shape_0 = const()[name = tensor("reshape_45_shape_0"), val = tensor([1, 512, 256, 256])]; - tensor reshape_45_cast_fp16 = reshape(shape = reshape_45_shape_0, x = real_div_11_cast_fp16)[name = tensor("reshape_45_cast_fp16")]; - tensor add_23_gamma_0_to_fp16 = const()[name = tensor("add_23_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54083264)))]; - tensor add_23_beta_0_to_fp16 = const()[name = tensor("add_23_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54084352)))]; - tensor add_23_epsilon_0_to_fp16 = const()[name = tensor("add_23_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_23_cast_fp16 = batch_norm(beta = add_23_beta_0_to_fp16, epsilon = add_23_epsilon_0_to_fp16, gamma = add_23_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_45_cast_fp16)[name = tensor("add_23_cast_fp16")]; - tensor input_87_cast_fp16 = silu(x = add_23_cast_fp16)[name = tensor("input_87_cast_fp16")]; - tensor input_89_pad_type_0 = const()[name = tensor("input_89_pad_type_0"), val = tensor("custom")]; - tensor input_89_pad_0 = const()[name = tensor("input_89_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_89_strides_0 = const()[name = tensor("input_89_strides_0"), val = tensor([1, 1])]; - tensor input_89_dilations_0 = const()[name = tensor("input_89_dilations_0"), val = tensor([1, 1])]; - tensor input_89_groups_0 = const()[name = tensor("input_89_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54085440)))]; - tensor decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58804096)))]; - tensor input_89_cast_fp16 = conv(bias = decoder_up_blocks_1_resnets_0_conv1_bias_to_fp16, dilations = input_89_dilations_0, groups = input_89_groups_0, pad = input_89_pad_0, pad_type = input_89_pad_type_0, strides = input_89_strides_0, weight = decoder_up_blocks_1_resnets_0_conv1_weight_to_fp16, x = input_87_cast_fp16)[name = tensor("input_89_cast_fp16")]; - tensor reshape_48_shape_0 = const()[name = tensor("reshape_48_shape_0"), val = tensor([1, 32, 16, 256, 256])]; - tensor reshape_48_cast_fp16 = reshape(shape = reshape_48_shape_0, x = input_89_cast_fp16)[name = tensor("reshape_48_cast_fp16")]; - tensor reduce_mean_36_axes_0 = const()[name = tensor("reduce_mean_36_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_36_keep_dims_0 = const()[name = tensor("reduce_mean_36_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_36_cast_fp16 = reduce_mean(axes = reduce_mean_36_axes_0, keep_dims = reduce_mean_36_keep_dims_0, x = reshape_48_cast_fp16)[name = tensor("reduce_mean_36_cast_fp16")]; - tensor sub_24_cast_fp16 = sub(x = reshape_48_cast_fp16, y = reduce_mean_36_cast_fp16)[name = tensor("sub_24_cast_fp16")]; - tensor square_12_cast_fp16 = square(x = sub_24_cast_fp16)[name = tensor("square_12_cast_fp16")]; - tensor reduce_mean_38_axes_0 = const()[name = tensor("reduce_mean_38_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_38_keep_dims_0 = const()[name = tensor("reduce_mean_38_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_38_cast_fp16 = reduce_mean(axes = reduce_mean_38_axes_0, keep_dims = reduce_mean_38_keep_dims_0, x = square_12_cast_fp16)[name = tensor("reduce_mean_38_cast_fp16")]; - tensor add_24_y_0_to_fp16 = const()[name = tensor("add_24_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_24_cast_fp16 = add(x = reduce_mean_38_cast_fp16, y = add_24_y_0_to_fp16)[name = tensor("add_24_cast_fp16")]; - tensor sqrt_12_cast_fp16 = sqrt(x = add_24_cast_fp16)[name = tensor("sqrt_12_cast_fp16")]; - tensor real_div_12_cast_fp16 = real_div(x = sub_24_cast_fp16, y = sqrt_12_cast_fp16)[name = tensor("real_div_12_cast_fp16")]; - tensor reshape_49_shape_0 = const()[name = tensor("reshape_49_shape_0"), val = tensor([1, 512, 256, 256])]; - tensor reshape_49_cast_fp16 = reshape(shape = reshape_49_shape_0, x = real_div_12_cast_fp16)[name = tensor("reshape_49_cast_fp16")]; - tensor add_25_gamma_0_to_fp16 = const()[name = tensor("add_25_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58805184)))]; - tensor add_25_beta_0_to_fp16 = const()[name = tensor("add_25_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58806272)))]; - tensor add_25_epsilon_0_to_fp16 = const()[name = tensor("add_25_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_25_cast_fp16 = batch_norm(beta = add_25_beta_0_to_fp16, epsilon = add_25_epsilon_0_to_fp16, gamma = add_25_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_49_cast_fp16)[name = tensor("add_25_cast_fp16")]; - tensor input_93_cast_fp16 = silu(x = add_25_cast_fp16)[name = tensor("input_93_cast_fp16")]; - tensor hidden_states_27_pad_type_0 = const()[name = tensor("hidden_states_27_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_27_pad_0 = const()[name = tensor("hidden_states_27_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_27_strides_0 = const()[name = tensor("hidden_states_27_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_27_dilations_0 = const()[name = tensor("hidden_states_27_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_27_groups_0 = const()[name = tensor("hidden_states_27_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58807360)))]; - tensor decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63526016)))]; - tensor hidden_states_27_cast_fp16 = conv(bias = decoder_up_blocks_1_resnets_0_conv2_bias_to_fp16, dilations = hidden_states_27_dilations_0, groups = hidden_states_27_groups_0, pad = hidden_states_27_pad_0, pad_type = hidden_states_27_pad_type_0, strides = hidden_states_27_strides_0, weight = decoder_up_blocks_1_resnets_0_conv2_weight_to_fp16, x = input_93_cast_fp16)[name = tensor("hidden_states_27_cast_fp16")]; - tensor var_324_cast_fp16 = add(x = input_83_cast_fp16, y = hidden_states_27_cast_fp16)[name = tensor("op_324_cast_fp16")]; - tensor reshape_52_shape_0 = const()[name = tensor("reshape_52_shape_0"), val = tensor([1, 32, 16, 256, 256])]; - tensor reshape_52_cast_fp16 = reshape(shape = reshape_52_shape_0, x = var_324_cast_fp16)[name = tensor("reshape_52_cast_fp16")]; - tensor reduce_mean_39_axes_0 = const()[name = tensor("reduce_mean_39_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_39_keep_dims_0 = const()[name = tensor("reduce_mean_39_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_39_cast_fp16 = reduce_mean(axes = reduce_mean_39_axes_0, keep_dims = reduce_mean_39_keep_dims_0, x = reshape_52_cast_fp16)[name = tensor("reduce_mean_39_cast_fp16")]; - tensor sub_26_cast_fp16 = sub(x = reshape_52_cast_fp16, y = reduce_mean_39_cast_fp16)[name = tensor("sub_26_cast_fp16")]; - tensor square_13_cast_fp16 = square(x = sub_26_cast_fp16)[name = tensor("square_13_cast_fp16")]; - tensor reduce_mean_41_axes_0 = const()[name = tensor("reduce_mean_41_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_41_keep_dims_0 = const()[name = tensor("reduce_mean_41_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_41_cast_fp16 = reduce_mean(axes = reduce_mean_41_axes_0, keep_dims = reduce_mean_41_keep_dims_0, x = square_13_cast_fp16)[name = tensor("reduce_mean_41_cast_fp16")]; - tensor add_26_y_0_to_fp16 = const()[name = tensor("add_26_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_26_cast_fp16 = add(x = reduce_mean_41_cast_fp16, y = add_26_y_0_to_fp16)[name = tensor("add_26_cast_fp16")]; - tensor sqrt_13_cast_fp16 = sqrt(x = add_26_cast_fp16)[name = tensor("sqrt_13_cast_fp16")]; - tensor real_div_13_cast_fp16 = real_div(x = sub_26_cast_fp16, y = sqrt_13_cast_fp16)[name = tensor("real_div_13_cast_fp16")]; - tensor reshape_53_shape_0 = const()[name = tensor("reshape_53_shape_0"), val = tensor([1, 512, 256, 256])]; - tensor reshape_53_cast_fp16 = reshape(shape = reshape_53_shape_0, x = real_div_13_cast_fp16)[name = tensor("reshape_53_cast_fp16")]; - tensor add_27_gamma_0_to_fp16 = const()[name = tensor("add_27_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63527104)))]; - tensor add_27_beta_0_to_fp16 = const()[name = tensor("add_27_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63528192)))]; - tensor add_27_epsilon_0_to_fp16 = const()[name = tensor("add_27_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_27_cast_fp16 = batch_norm(beta = add_27_beta_0_to_fp16, epsilon = add_27_epsilon_0_to_fp16, gamma = add_27_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_53_cast_fp16)[name = tensor("add_27_cast_fp16")]; - tensor input_101_cast_fp16 = silu(x = add_27_cast_fp16)[name = tensor("input_101_cast_fp16")]; - tensor input_103_pad_type_0 = const()[name = tensor("input_103_pad_type_0"), val = tensor("custom")]; - tensor input_103_pad_0 = const()[name = tensor("input_103_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_103_strides_0 = const()[name = tensor("input_103_strides_0"), val = tensor([1, 1])]; - tensor input_103_dilations_0 = const()[name = tensor("input_103_dilations_0"), val = tensor([1, 1])]; - tensor input_103_groups_0 = const()[name = tensor("input_103_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63529280)))]; - tensor decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68247936)))]; - tensor input_103_cast_fp16 = conv(bias = decoder_up_blocks_1_resnets_1_conv1_bias_to_fp16, dilations = input_103_dilations_0, groups = input_103_groups_0, pad = input_103_pad_0, pad_type = input_103_pad_type_0, strides = input_103_strides_0, weight = decoder_up_blocks_1_resnets_1_conv1_weight_to_fp16, x = input_101_cast_fp16)[name = tensor("input_103_cast_fp16")]; - tensor reshape_56_shape_0 = const()[name = tensor("reshape_56_shape_0"), val = tensor([1, 32, 16, 256, 256])]; - tensor reshape_56_cast_fp16 = reshape(shape = reshape_56_shape_0, x = input_103_cast_fp16)[name = tensor("reshape_56_cast_fp16")]; - tensor reduce_mean_42_axes_0 = const()[name = tensor("reduce_mean_42_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_42_keep_dims_0 = const()[name = tensor("reduce_mean_42_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_42_cast_fp16 = reduce_mean(axes = reduce_mean_42_axes_0, keep_dims = reduce_mean_42_keep_dims_0, x = reshape_56_cast_fp16)[name = tensor("reduce_mean_42_cast_fp16")]; - tensor sub_28_cast_fp16 = sub(x = reshape_56_cast_fp16, y = reduce_mean_42_cast_fp16)[name = tensor("sub_28_cast_fp16")]; - tensor square_14_cast_fp16 = square(x = sub_28_cast_fp16)[name = tensor("square_14_cast_fp16")]; - tensor reduce_mean_44_axes_0 = const()[name = tensor("reduce_mean_44_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_44_keep_dims_0 = const()[name = tensor("reduce_mean_44_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_44_cast_fp16 = reduce_mean(axes = reduce_mean_44_axes_0, keep_dims = reduce_mean_44_keep_dims_0, x = square_14_cast_fp16)[name = tensor("reduce_mean_44_cast_fp16")]; - tensor add_28_y_0_to_fp16 = const()[name = tensor("add_28_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_28_cast_fp16 = add(x = reduce_mean_44_cast_fp16, y = add_28_y_0_to_fp16)[name = tensor("add_28_cast_fp16")]; - tensor sqrt_14_cast_fp16 = sqrt(x = add_28_cast_fp16)[name = tensor("sqrt_14_cast_fp16")]; - tensor real_div_14_cast_fp16 = real_div(x = sub_28_cast_fp16, y = sqrt_14_cast_fp16)[name = tensor("real_div_14_cast_fp16")]; - tensor reshape_57_shape_0 = const()[name = tensor("reshape_57_shape_0"), val = tensor([1, 512, 256, 256])]; - tensor reshape_57_cast_fp16 = reshape(shape = reshape_57_shape_0, x = real_div_14_cast_fp16)[name = tensor("reshape_57_cast_fp16")]; - tensor add_29_gamma_0_to_fp16 = const()[name = tensor("add_29_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68249024)))]; - tensor add_29_beta_0_to_fp16 = const()[name = tensor("add_29_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68250112)))]; - tensor add_29_epsilon_0_to_fp16 = const()[name = tensor("add_29_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_29_cast_fp16 = batch_norm(beta = add_29_beta_0_to_fp16, epsilon = add_29_epsilon_0_to_fp16, gamma = add_29_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_57_cast_fp16)[name = tensor("add_29_cast_fp16")]; - tensor input_107_cast_fp16 = silu(x = add_29_cast_fp16)[name = tensor("input_107_cast_fp16")]; - tensor hidden_states_29_pad_type_0 = const()[name = tensor("hidden_states_29_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_29_pad_0 = const()[name = tensor("hidden_states_29_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_29_strides_0 = const()[name = tensor("hidden_states_29_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_29_dilations_0 = const()[name = tensor("hidden_states_29_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_29_groups_0 = const()[name = tensor("hidden_states_29_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68251200)))]; - tensor decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(72969856)))]; - tensor hidden_states_29_cast_fp16 = conv(bias = decoder_up_blocks_1_resnets_1_conv2_bias_to_fp16, dilations = hidden_states_29_dilations_0, groups = hidden_states_29_groups_0, pad = hidden_states_29_pad_0, pad_type = hidden_states_29_pad_type_0, strides = hidden_states_29_strides_0, weight = decoder_up_blocks_1_resnets_1_conv2_weight_to_fp16, x = input_107_cast_fp16)[name = tensor("hidden_states_29_cast_fp16")]; - tensor var_354_cast_fp16 = add(x = var_324_cast_fp16, y = hidden_states_29_cast_fp16)[name = tensor("op_354_cast_fp16")]; - tensor reshape_60_shape_0 = const()[name = tensor("reshape_60_shape_0"), val = tensor([1, 32, 16, 256, 256])]; - tensor reshape_60_cast_fp16 = reshape(shape = reshape_60_shape_0, x = var_354_cast_fp16)[name = tensor("reshape_60_cast_fp16")]; - tensor reduce_mean_45_axes_0 = const()[name = tensor("reduce_mean_45_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_45_keep_dims_0 = const()[name = tensor("reduce_mean_45_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_45_cast_fp16 = reduce_mean(axes = reduce_mean_45_axes_0, keep_dims = reduce_mean_45_keep_dims_0, x = reshape_60_cast_fp16)[name = tensor("reduce_mean_45_cast_fp16")]; - tensor sub_30_cast_fp16 = sub(x = reshape_60_cast_fp16, y = reduce_mean_45_cast_fp16)[name = tensor("sub_30_cast_fp16")]; - tensor square_15_cast_fp16 = square(x = sub_30_cast_fp16)[name = tensor("square_15_cast_fp16")]; - tensor reduce_mean_47_axes_0 = const()[name = tensor("reduce_mean_47_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_47_keep_dims_0 = const()[name = tensor("reduce_mean_47_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_47_cast_fp16 = reduce_mean(axes = reduce_mean_47_axes_0, keep_dims = reduce_mean_47_keep_dims_0, x = square_15_cast_fp16)[name = tensor("reduce_mean_47_cast_fp16")]; - tensor add_30_y_0_to_fp16 = const()[name = tensor("add_30_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_30_cast_fp16 = add(x = reduce_mean_47_cast_fp16, y = add_30_y_0_to_fp16)[name = tensor("add_30_cast_fp16")]; - tensor sqrt_15_cast_fp16 = sqrt(x = add_30_cast_fp16)[name = tensor("sqrt_15_cast_fp16")]; - tensor real_div_15_cast_fp16 = real_div(x = sub_30_cast_fp16, y = sqrt_15_cast_fp16)[name = tensor("real_div_15_cast_fp16")]; - tensor reshape_61_shape_0 = const()[name = tensor("reshape_61_shape_0"), val = tensor([1, 512, 256, 256])]; - tensor reshape_61_cast_fp16 = reshape(shape = reshape_61_shape_0, x = real_div_15_cast_fp16)[name = tensor("reshape_61_cast_fp16")]; - tensor add_31_gamma_0_to_fp16 = const()[name = tensor("add_31_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(72970944)))]; - tensor add_31_beta_0_to_fp16 = const()[name = tensor("add_31_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(72972032)))]; - tensor add_31_epsilon_0_to_fp16 = const()[name = tensor("add_31_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_31_cast_fp16 = batch_norm(beta = add_31_beta_0_to_fp16, epsilon = add_31_epsilon_0_to_fp16, gamma = add_31_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_61_cast_fp16)[name = tensor("add_31_cast_fp16")]; - tensor input_115_cast_fp16 = silu(x = add_31_cast_fp16)[name = tensor("input_115_cast_fp16")]; - tensor input_117_pad_type_0 = const()[name = tensor("input_117_pad_type_0"), val = tensor("custom")]; - tensor input_117_pad_0 = const()[name = tensor("input_117_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_117_strides_0 = const()[name = tensor("input_117_strides_0"), val = tensor([1, 1])]; - tensor input_117_dilations_0 = const()[name = tensor("input_117_dilations_0"), val = tensor([1, 1])]; - tensor input_117_groups_0 = const()[name = tensor("input_117_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(72973120)))]; - tensor decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77691776)))]; - tensor input_117_cast_fp16 = conv(bias = decoder_up_blocks_1_resnets_2_conv1_bias_to_fp16, dilations = input_117_dilations_0, groups = input_117_groups_0, pad = input_117_pad_0, pad_type = input_117_pad_type_0, strides = input_117_strides_0, weight = decoder_up_blocks_1_resnets_2_conv1_weight_to_fp16, x = input_115_cast_fp16)[name = tensor("input_117_cast_fp16")]; - tensor reshape_64_shape_0 = const()[name = tensor("reshape_64_shape_0"), val = tensor([1, 32, 16, 256, 256])]; - tensor reshape_64_cast_fp16 = reshape(shape = reshape_64_shape_0, x = input_117_cast_fp16)[name = tensor("reshape_64_cast_fp16")]; - tensor reduce_mean_48_axes_0 = const()[name = tensor("reduce_mean_48_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_48_keep_dims_0 = const()[name = tensor("reduce_mean_48_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_48_cast_fp16 = reduce_mean(axes = reduce_mean_48_axes_0, keep_dims = reduce_mean_48_keep_dims_0, x = reshape_64_cast_fp16)[name = tensor("reduce_mean_48_cast_fp16")]; - tensor sub_32_cast_fp16 = sub(x = reshape_64_cast_fp16, y = reduce_mean_48_cast_fp16)[name = tensor("sub_32_cast_fp16")]; - tensor square_16_cast_fp16 = square(x = sub_32_cast_fp16)[name = tensor("square_16_cast_fp16")]; - tensor reduce_mean_50_axes_0 = const()[name = tensor("reduce_mean_50_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_50_keep_dims_0 = const()[name = tensor("reduce_mean_50_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_50_cast_fp16 = reduce_mean(axes = reduce_mean_50_axes_0, keep_dims = reduce_mean_50_keep_dims_0, x = square_16_cast_fp16)[name = tensor("reduce_mean_50_cast_fp16")]; - tensor add_32_y_0_to_fp16 = const()[name = tensor("add_32_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_32_cast_fp16 = add(x = reduce_mean_50_cast_fp16, y = add_32_y_0_to_fp16)[name = tensor("add_32_cast_fp16")]; - tensor sqrt_16_cast_fp16 = sqrt(x = add_32_cast_fp16)[name = tensor("sqrt_16_cast_fp16")]; - tensor real_div_16_cast_fp16 = real_div(x = sub_32_cast_fp16, y = sqrt_16_cast_fp16)[name = tensor("real_div_16_cast_fp16")]; - tensor reshape_65_shape_0 = const()[name = tensor("reshape_65_shape_0"), val = tensor([1, 512, 256, 256])]; - tensor reshape_65_cast_fp16 = reshape(shape = reshape_65_shape_0, x = real_div_16_cast_fp16)[name = tensor("reshape_65_cast_fp16")]; - tensor add_33_gamma_0_to_fp16 = const()[name = tensor("add_33_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77692864)))]; - tensor add_33_beta_0_to_fp16 = const()[name = tensor("add_33_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77693952)))]; - tensor add_33_epsilon_0_to_fp16 = const()[name = tensor("add_33_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_33_cast_fp16 = batch_norm(beta = add_33_beta_0_to_fp16, epsilon = add_33_epsilon_0_to_fp16, gamma = add_33_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_65_cast_fp16)[name = tensor("add_33_cast_fp16")]; - tensor input_121_cast_fp16 = silu(x = add_33_cast_fp16)[name = tensor("input_121_cast_fp16")]; - tensor hidden_states_31_pad_type_0 = const()[name = tensor("hidden_states_31_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_31_pad_0 = const()[name = tensor("hidden_states_31_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_31_strides_0 = const()[name = tensor("hidden_states_31_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_31_dilations_0 = const()[name = tensor("hidden_states_31_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_31_groups_0 = const()[name = tensor("hidden_states_31_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77695040)))]; - tensor decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(82413696)))]; - tensor hidden_states_31_cast_fp16 = conv(bias = decoder_up_blocks_1_resnets_2_conv2_bias_to_fp16, dilations = hidden_states_31_dilations_0, groups = hidden_states_31_groups_0, pad = hidden_states_31_pad_0, pad_type = hidden_states_31_pad_type_0, strides = hidden_states_31_strides_0, weight = decoder_up_blocks_1_resnets_2_conv2_weight_to_fp16, x = input_121_cast_fp16)[name = tensor("hidden_states_31_cast_fp16")]; - tensor var_384_cast_fp16 = add(x = var_354_cast_fp16, y = hidden_states_31_cast_fp16)[name = tensor("op_384_cast_fp16")]; - tensor input_125_scale_factor_height_0 = const()[name = tensor("input_125_scale_factor_height_0"), val = tensor(0x1p+1)]; - tensor input_125_scale_factor_width_0 = const()[name = tensor("input_125_scale_factor_width_0"), val = tensor(0x1p+1)]; - tensor input_125_cast_fp16 = upsample_nearest_neighbor(scale_factor_height = input_125_scale_factor_height_0, scale_factor_width = input_125_scale_factor_width_0, x = var_384_cast_fp16)[name = tensor("input_125_cast_fp16")]; - tensor input_127_pad_type_0 = const()[name = tensor("input_127_pad_type_0"), val = tensor("custom")]; - tensor input_127_pad_0 = const()[name = tensor("input_127_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_127_strides_0 = const()[name = tensor("input_127_strides_0"), val = tensor([1, 1])]; - tensor input_127_dilations_0 = const()[name = tensor("input_127_dilations_0"), val = tensor([1, 1])]; - tensor input_127_groups_0 = const()[name = tensor("input_127_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(82414784)))]; - tensor decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87133440)))]; - tensor input_127_cast_fp16 = conv(bias = decoder_up_blocks_1_upsamplers_0_conv_bias_to_fp16, dilations = input_127_dilations_0, groups = input_127_groups_0, pad = input_127_pad_0, pad_type = input_127_pad_type_0, strides = input_127_strides_0, weight = decoder_up_blocks_1_upsamplers_0_conv_weight_to_fp16, x = input_125_cast_fp16)[name = tensor("input_127_cast_fp16")]; - tensor reshape_68_shape_0 = const()[name = tensor("reshape_68_shape_0"), val = tensor([1, 32, 16, 512, 512])]; - tensor reshape_68_cast_fp16 = reshape(shape = reshape_68_shape_0, x = input_127_cast_fp16)[name = tensor("reshape_68_cast_fp16")]; - tensor reduce_mean_51_axes_0 = const()[name = tensor("reduce_mean_51_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_51_keep_dims_0 = const()[name = tensor("reduce_mean_51_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_51_cast_fp16 = reduce_mean(axes = reduce_mean_51_axes_0, keep_dims = reduce_mean_51_keep_dims_0, x = reshape_68_cast_fp16)[name = tensor("reduce_mean_51_cast_fp16")]; - tensor sub_34_cast_fp16 = sub(x = reshape_68_cast_fp16, y = reduce_mean_51_cast_fp16)[name = tensor("sub_34_cast_fp16")]; - tensor square_17_cast_fp16 = square(x = sub_34_cast_fp16)[name = tensor("square_17_cast_fp16")]; - tensor reduce_mean_53_axes_0 = const()[name = tensor("reduce_mean_53_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_53_keep_dims_0 = const()[name = tensor("reduce_mean_53_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_53_cast_fp16 = reduce_mean(axes = reduce_mean_53_axes_0, keep_dims = reduce_mean_53_keep_dims_0, x = square_17_cast_fp16)[name = tensor("reduce_mean_53_cast_fp16")]; - tensor add_34_y_0_to_fp16 = const()[name = tensor("add_34_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_34_cast_fp16 = add(x = reduce_mean_53_cast_fp16, y = add_34_y_0_to_fp16)[name = tensor("add_34_cast_fp16")]; - tensor sqrt_17_cast_fp16 = sqrt(x = add_34_cast_fp16)[name = tensor("sqrt_17_cast_fp16")]; - tensor real_div_17_cast_fp16 = real_div(x = sub_34_cast_fp16, y = sqrt_17_cast_fp16)[name = tensor("real_div_17_cast_fp16")]; - tensor reshape_69_shape_0 = const()[name = tensor("reshape_69_shape_0"), val = tensor([1, 512, 512, 512])]; - tensor reshape_69_cast_fp16 = reshape(shape = reshape_69_shape_0, x = real_div_17_cast_fp16)[name = tensor("reshape_69_cast_fp16")]; - tensor add_35_gamma_0_to_fp16 = const()[name = tensor("add_35_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87134528)))]; - tensor add_35_beta_0_to_fp16 = const()[name = tensor("add_35_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87135616)))]; - tensor add_35_epsilon_0_to_fp16 = const()[name = tensor("add_35_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_35_cast_fp16 = batch_norm(beta = add_35_beta_0_to_fp16, epsilon = add_35_epsilon_0_to_fp16, gamma = add_35_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_69_cast_fp16)[name = tensor("add_35_cast_fp16")]; - tensor input_131_cast_fp16 = silu(x = add_35_cast_fp16)[name = tensor("input_131_cast_fp16")]; - tensor input_133_pad_type_0 = const()[name = tensor("input_133_pad_type_0"), val = tensor("custom")]; - tensor input_133_pad_0 = const()[name = tensor("input_133_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_133_strides_0 = const()[name = tensor("input_133_strides_0"), val = tensor([1, 1])]; - tensor input_133_dilations_0 = const()[name = tensor("input_133_dilations_0"), val = tensor([1, 1])]; - tensor input_133_groups_0 = const()[name = tensor("input_133_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87136704)))]; - tensor decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89496064)))]; - tensor input_133_cast_fp16 = conv(bias = decoder_up_blocks_2_resnets_0_conv1_bias_to_fp16, dilations = input_133_dilations_0, groups = input_133_groups_0, pad = input_133_pad_0, pad_type = input_133_pad_type_0, strides = input_133_strides_0, weight = decoder_up_blocks_2_resnets_0_conv1_weight_to_fp16, x = input_131_cast_fp16)[name = tensor("input_133_cast_fp16")]; - tensor reshape_72_shape_0 = const()[name = tensor("reshape_72_shape_0"), val = tensor([1, 32, 8, 512, 512])]; - tensor reshape_72_cast_fp16 = reshape(shape = reshape_72_shape_0, x = input_133_cast_fp16)[name = tensor("reshape_72_cast_fp16")]; - tensor reduce_mean_54_axes_0 = const()[name = tensor("reduce_mean_54_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_54_keep_dims_0 = const()[name = tensor("reduce_mean_54_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_54_cast_fp16 = reduce_mean(axes = reduce_mean_54_axes_0, keep_dims = reduce_mean_54_keep_dims_0, x = reshape_72_cast_fp16)[name = tensor("reduce_mean_54_cast_fp16")]; - tensor sub_36_cast_fp16 = sub(x = reshape_72_cast_fp16, y = reduce_mean_54_cast_fp16)[name = tensor("sub_36_cast_fp16")]; - tensor square_18_cast_fp16 = square(x = sub_36_cast_fp16)[name = tensor("square_18_cast_fp16")]; - tensor reduce_mean_56_axes_0 = const()[name = tensor("reduce_mean_56_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_56_keep_dims_0 = const()[name = tensor("reduce_mean_56_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_56_cast_fp16 = reduce_mean(axes = reduce_mean_56_axes_0, keep_dims = reduce_mean_56_keep_dims_0, x = square_18_cast_fp16)[name = tensor("reduce_mean_56_cast_fp16")]; - tensor add_36_y_0_to_fp16 = const()[name = tensor("add_36_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_36_cast_fp16 = add(x = reduce_mean_56_cast_fp16, y = add_36_y_0_to_fp16)[name = tensor("add_36_cast_fp16")]; - tensor sqrt_18_cast_fp16 = sqrt(x = add_36_cast_fp16)[name = tensor("sqrt_18_cast_fp16")]; - tensor real_div_18_cast_fp16 = real_div(x = sub_36_cast_fp16, y = sqrt_18_cast_fp16)[name = tensor("real_div_18_cast_fp16")]; - tensor reshape_73_shape_0 = const()[name = tensor("reshape_73_shape_0"), val = tensor([1, 256, 512, 512])]; - tensor reshape_73_cast_fp16 = reshape(shape = reshape_73_shape_0, x = real_div_18_cast_fp16)[name = tensor("reshape_73_cast_fp16")]; - tensor add_37_mean_0_to_fp16 = const()[name = tensor("add_37_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89496640)))]; - tensor add_37_variance_0_to_fp16 = const()[name = tensor("add_37_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89497216)))]; - tensor add_37_gamma_0_to_fp16 = const()[name = tensor("add_37_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89497792)))]; - tensor add_37_beta_0_to_fp16 = const()[name = tensor("add_37_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89498368)))]; - tensor add_37_epsilon_0_to_fp16 = const()[name = tensor("add_37_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_37_cast_fp16 = batch_norm(beta = add_37_beta_0_to_fp16, epsilon = add_37_epsilon_0_to_fp16, gamma = add_37_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_73_cast_fp16)[name = tensor("add_37_cast_fp16")]; - tensor input_137_cast_fp16 = silu(x = add_37_cast_fp16)[name = tensor("input_137_cast_fp16")]; - tensor hidden_states_35_pad_type_0 = const()[name = tensor("hidden_states_35_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_35_pad_0 = const()[name = tensor("hidden_states_35_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_35_strides_0 = const()[name = tensor("hidden_states_35_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_35_dilations_0 = const()[name = tensor("hidden_states_35_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_35_groups_0 = const()[name = tensor("hidden_states_35_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89498944)))]; - tensor decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90678656)))]; - tensor hidden_states_35_cast_fp16 = conv(bias = decoder_up_blocks_2_resnets_0_conv2_bias_to_fp16, dilations = hidden_states_35_dilations_0, groups = hidden_states_35_groups_0, pad = hidden_states_35_pad_0, pad_type = hidden_states_35_pad_type_0, strides = hidden_states_35_strides_0, weight = decoder_up_blocks_2_resnets_0_conv2_weight_to_fp16, x = input_137_cast_fp16)[name = tensor("hidden_states_35_cast_fp16")]; - tensor input_tensor_1_pad_type_0 = const()[name = tensor("input_tensor_1_pad_type_0"), val = tensor("valid")]; - tensor input_tensor_1_strides_0 = const()[name = tensor("input_tensor_1_strides_0"), val = tensor([1, 1])]; - tensor input_tensor_1_pad_0 = const()[name = tensor("input_tensor_1_pad_0"), val = tensor([0, 0, 0, 0])]; - tensor input_tensor_1_dilations_0 = const()[name = tensor("input_tensor_1_dilations_0"), val = tensor([1, 1])]; - tensor input_tensor_1_groups_0 = const()[name = tensor("input_tensor_1_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90679232)))]; - tensor decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90941440)))]; - tensor input_tensor_1_cast_fp16 = conv(bias = decoder_up_blocks_2_resnets_0_conv_shortcut_bias_to_fp16, dilations = input_tensor_1_dilations_0, groups = input_tensor_1_groups_0, pad = input_tensor_1_pad_0, pad_type = input_tensor_1_pad_type_0, strides = input_tensor_1_strides_0, weight = decoder_up_blocks_2_resnets_0_conv_shortcut_weight_to_fp16, x = input_127_cast_fp16)[name = tensor("input_tensor_1_cast_fp16")]; - tensor var_440_cast_fp16 = add(x = input_tensor_1_cast_fp16, y = hidden_states_35_cast_fp16)[name = tensor("op_440_cast_fp16")]; - tensor reshape_76_shape_0 = const()[name = tensor("reshape_76_shape_0"), val = tensor([1, 32, 8, 512, 512])]; - tensor reshape_76_cast_fp16 = reshape(shape = reshape_76_shape_0, x = var_440_cast_fp16)[name = tensor("reshape_76_cast_fp16")]; - tensor reduce_mean_57_axes_0 = const()[name = tensor("reduce_mean_57_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_57_keep_dims_0 = const()[name = tensor("reduce_mean_57_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_57_cast_fp16 = reduce_mean(axes = reduce_mean_57_axes_0, keep_dims = reduce_mean_57_keep_dims_0, x = reshape_76_cast_fp16)[name = tensor("reduce_mean_57_cast_fp16")]; - tensor sub_38_cast_fp16 = sub(x = reshape_76_cast_fp16, y = reduce_mean_57_cast_fp16)[name = tensor("sub_38_cast_fp16")]; - tensor square_19_cast_fp16 = square(x = sub_38_cast_fp16)[name = tensor("square_19_cast_fp16")]; - tensor reduce_mean_59_axes_0 = const()[name = tensor("reduce_mean_59_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_59_keep_dims_0 = const()[name = tensor("reduce_mean_59_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_59_cast_fp16 = reduce_mean(axes = reduce_mean_59_axes_0, keep_dims = reduce_mean_59_keep_dims_0, x = square_19_cast_fp16)[name = tensor("reduce_mean_59_cast_fp16")]; - tensor add_38_y_0_to_fp16 = const()[name = tensor("add_38_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_38_cast_fp16 = add(x = reduce_mean_59_cast_fp16, y = add_38_y_0_to_fp16)[name = tensor("add_38_cast_fp16")]; - tensor sqrt_19_cast_fp16 = sqrt(x = add_38_cast_fp16)[name = tensor("sqrt_19_cast_fp16")]; - tensor real_div_19_cast_fp16 = real_div(x = sub_38_cast_fp16, y = sqrt_19_cast_fp16)[name = tensor("real_div_19_cast_fp16")]; - tensor reshape_77_shape_0 = const()[name = tensor("reshape_77_shape_0"), val = tensor([1, 256, 512, 512])]; - tensor reshape_77_cast_fp16 = reshape(shape = reshape_77_shape_0, x = real_div_19_cast_fp16)[name = tensor("reshape_77_cast_fp16")]; - tensor add_39_gamma_0_to_fp16 = const()[name = tensor("add_39_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90942016)))]; - tensor add_39_beta_0_to_fp16 = const()[name = tensor("add_39_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90942592)))]; - tensor add_39_epsilon_0_to_fp16 = const()[name = tensor("add_39_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_39_cast_fp16 = batch_norm(beta = add_39_beta_0_to_fp16, epsilon = add_39_epsilon_0_to_fp16, gamma = add_39_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_77_cast_fp16)[name = tensor("add_39_cast_fp16")]; - tensor input_145_cast_fp16 = silu(x = add_39_cast_fp16)[name = tensor("input_145_cast_fp16")]; - tensor input_147_pad_type_0 = const()[name = tensor("input_147_pad_type_0"), val = tensor("custom")]; - tensor input_147_pad_0 = const()[name = tensor("input_147_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_147_strides_0 = const()[name = tensor("input_147_strides_0"), val = tensor([1, 1])]; - tensor input_147_dilations_0 = const()[name = tensor("input_147_dilations_0"), val = tensor([1, 1])]; - tensor input_147_groups_0 = const()[name = tensor("input_147_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(90943168)))]; - tensor decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92122880)))]; - tensor input_147_cast_fp16 = conv(bias = decoder_up_blocks_2_resnets_1_conv1_bias_to_fp16, dilations = input_147_dilations_0, groups = input_147_groups_0, pad = input_147_pad_0, pad_type = input_147_pad_type_0, strides = input_147_strides_0, weight = decoder_up_blocks_2_resnets_1_conv1_weight_to_fp16, x = input_145_cast_fp16)[name = tensor("input_147_cast_fp16")]; - tensor reshape_80_shape_0 = const()[name = tensor("reshape_80_shape_0"), val = tensor([1, 32, 8, 512, 512])]; - tensor reshape_80_cast_fp16 = reshape(shape = reshape_80_shape_0, x = input_147_cast_fp16)[name = tensor("reshape_80_cast_fp16")]; - tensor reduce_mean_60_axes_0 = const()[name = tensor("reduce_mean_60_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_60_keep_dims_0 = const()[name = tensor("reduce_mean_60_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_60_cast_fp16 = reduce_mean(axes = reduce_mean_60_axes_0, keep_dims = reduce_mean_60_keep_dims_0, x = reshape_80_cast_fp16)[name = tensor("reduce_mean_60_cast_fp16")]; - tensor sub_40_cast_fp16 = sub(x = reshape_80_cast_fp16, y = reduce_mean_60_cast_fp16)[name = tensor("sub_40_cast_fp16")]; - tensor square_20_cast_fp16 = square(x = sub_40_cast_fp16)[name = tensor("square_20_cast_fp16")]; - tensor reduce_mean_62_axes_0 = const()[name = tensor("reduce_mean_62_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_62_keep_dims_0 = const()[name = tensor("reduce_mean_62_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_62_cast_fp16 = reduce_mean(axes = reduce_mean_62_axes_0, keep_dims = reduce_mean_62_keep_dims_0, x = square_20_cast_fp16)[name = tensor("reduce_mean_62_cast_fp16")]; - tensor add_40_y_0_to_fp16 = const()[name = tensor("add_40_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_40_cast_fp16 = add(x = reduce_mean_62_cast_fp16, y = add_40_y_0_to_fp16)[name = tensor("add_40_cast_fp16")]; - tensor sqrt_20_cast_fp16 = sqrt(x = add_40_cast_fp16)[name = tensor("sqrt_20_cast_fp16")]; - tensor real_div_20_cast_fp16 = real_div(x = sub_40_cast_fp16, y = sqrt_20_cast_fp16)[name = tensor("real_div_20_cast_fp16")]; - tensor reshape_81_shape_0 = const()[name = tensor("reshape_81_shape_0"), val = tensor([1, 256, 512, 512])]; - tensor reshape_81_cast_fp16 = reshape(shape = reshape_81_shape_0, x = real_div_20_cast_fp16)[name = tensor("reshape_81_cast_fp16")]; - tensor add_41_gamma_0_to_fp16 = const()[name = tensor("add_41_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92123456)))]; - tensor add_41_beta_0_to_fp16 = const()[name = tensor("add_41_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92124032)))]; - tensor add_41_epsilon_0_to_fp16 = const()[name = tensor("add_41_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_41_cast_fp16 = batch_norm(beta = add_41_beta_0_to_fp16, epsilon = add_41_epsilon_0_to_fp16, gamma = add_41_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_81_cast_fp16)[name = tensor("add_41_cast_fp16")]; - tensor input_151_cast_fp16 = silu(x = add_41_cast_fp16)[name = tensor("input_151_cast_fp16")]; - tensor hidden_states_37_pad_type_0 = const()[name = tensor("hidden_states_37_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_37_pad_0 = const()[name = tensor("hidden_states_37_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_37_strides_0 = const()[name = tensor("hidden_states_37_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_37_dilations_0 = const()[name = tensor("hidden_states_37_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_37_groups_0 = const()[name = tensor("hidden_states_37_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(92124608)))]; - tensor decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93304320)))]; - tensor hidden_states_37_cast_fp16 = conv(bias = decoder_up_blocks_2_resnets_1_conv2_bias_to_fp16, dilations = hidden_states_37_dilations_0, groups = hidden_states_37_groups_0, pad = hidden_states_37_pad_0, pad_type = hidden_states_37_pad_type_0, strides = hidden_states_37_strides_0, weight = decoder_up_blocks_2_resnets_1_conv2_weight_to_fp16, x = input_151_cast_fp16)[name = tensor("hidden_states_37_cast_fp16")]; - tensor var_470_cast_fp16 = add(x = var_440_cast_fp16, y = hidden_states_37_cast_fp16)[name = tensor("op_470_cast_fp16")]; - tensor reshape_84_shape_0 = const()[name = tensor("reshape_84_shape_0"), val = tensor([1, 32, 8, 512, 512])]; - tensor reshape_84_cast_fp16 = reshape(shape = reshape_84_shape_0, x = var_470_cast_fp16)[name = tensor("reshape_84_cast_fp16")]; - tensor reduce_mean_63_axes_0 = const()[name = tensor("reduce_mean_63_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_63_keep_dims_0 = const()[name = tensor("reduce_mean_63_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_63_cast_fp16 = reduce_mean(axes = reduce_mean_63_axes_0, keep_dims = reduce_mean_63_keep_dims_0, x = reshape_84_cast_fp16)[name = tensor("reduce_mean_63_cast_fp16")]; - tensor sub_42_cast_fp16 = sub(x = reshape_84_cast_fp16, y = reduce_mean_63_cast_fp16)[name = tensor("sub_42_cast_fp16")]; - tensor square_21_cast_fp16 = square(x = sub_42_cast_fp16)[name = tensor("square_21_cast_fp16")]; - tensor reduce_mean_65_axes_0 = const()[name = tensor("reduce_mean_65_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_65_keep_dims_0 = const()[name = tensor("reduce_mean_65_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_65_cast_fp16 = reduce_mean(axes = reduce_mean_65_axes_0, keep_dims = reduce_mean_65_keep_dims_0, x = square_21_cast_fp16)[name = tensor("reduce_mean_65_cast_fp16")]; - tensor add_42_y_0_to_fp16 = const()[name = tensor("add_42_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_42_cast_fp16 = add(x = reduce_mean_65_cast_fp16, y = add_42_y_0_to_fp16)[name = tensor("add_42_cast_fp16")]; - tensor sqrt_21_cast_fp16 = sqrt(x = add_42_cast_fp16)[name = tensor("sqrt_21_cast_fp16")]; - tensor real_div_21_cast_fp16 = real_div(x = sub_42_cast_fp16, y = sqrt_21_cast_fp16)[name = tensor("real_div_21_cast_fp16")]; - tensor reshape_85_shape_0 = const()[name = tensor("reshape_85_shape_0"), val = tensor([1, 256, 512, 512])]; - tensor reshape_85_cast_fp16 = reshape(shape = reshape_85_shape_0, x = real_div_21_cast_fp16)[name = tensor("reshape_85_cast_fp16")]; - tensor add_43_gamma_0_to_fp16 = const()[name = tensor("add_43_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93304896)))]; - tensor add_43_beta_0_to_fp16 = const()[name = tensor("add_43_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93305472)))]; - tensor add_43_epsilon_0_to_fp16 = const()[name = tensor("add_43_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_43_cast_fp16 = batch_norm(beta = add_43_beta_0_to_fp16, epsilon = add_43_epsilon_0_to_fp16, gamma = add_43_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_85_cast_fp16)[name = tensor("add_43_cast_fp16")]; - tensor input_159_cast_fp16 = silu(x = add_43_cast_fp16)[name = tensor("input_159_cast_fp16")]; - tensor input_161_pad_type_0 = const()[name = tensor("input_161_pad_type_0"), val = tensor("custom")]; - tensor input_161_pad_0 = const()[name = tensor("input_161_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_161_strides_0 = const()[name = tensor("input_161_strides_0"), val = tensor([1, 1])]; - tensor input_161_dilations_0 = const()[name = tensor("input_161_dilations_0"), val = tensor([1, 1])]; - tensor input_161_groups_0 = const()[name = tensor("input_161_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93306048)))]; - tensor decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(94485760)))]; - tensor input_161_cast_fp16 = conv(bias = decoder_up_blocks_2_resnets_2_conv1_bias_to_fp16, dilations = input_161_dilations_0, groups = input_161_groups_0, pad = input_161_pad_0, pad_type = input_161_pad_type_0, strides = input_161_strides_0, weight = decoder_up_blocks_2_resnets_2_conv1_weight_to_fp16, x = input_159_cast_fp16)[name = tensor("input_161_cast_fp16")]; - tensor reshape_88_shape_0 = const()[name = tensor("reshape_88_shape_0"), val = tensor([1, 32, 8, 512, 512])]; - tensor reshape_88_cast_fp16 = reshape(shape = reshape_88_shape_0, x = input_161_cast_fp16)[name = tensor("reshape_88_cast_fp16")]; - tensor reduce_mean_66_axes_0 = const()[name = tensor("reduce_mean_66_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_66_keep_dims_0 = const()[name = tensor("reduce_mean_66_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_66_cast_fp16 = reduce_mean(axes = reduce_mean_66_axes_0, keep_dims = reduce_mean_66_keep_dims_0, x = reshape_88_cast_fp16)[name = tensor("reduce_mean_66_cast_fp16")]; - tensor sub_44_cast_fp16 = sub(x = reshape_88_cast_fp16, y = reduce_mean_66_cast_fp16)[name = tensor("sub_44_cast_fp16")]; - tensor square_22_cast_fp16 = square(x = sub_44_cast_fp16)[name = tensor("square_22_cast_fp16")]; - tensor reduce_mean_68_axes_0 = const()[name = tensor("reduce_mean_68_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_68_keep_dims_0 = const()[name = tensor("reduce_mean_68_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_68_cast_fp16 = reduce_mean(axes = reduce_mean_68_axes_0, keep_dims = reduce_mean_68_keep_dims_0, x = square_22_cast_fp16)[name = tensor("reduce_mean_68_cast_fp16")]; - tensor add_44_y_0_to_fp16 = const()[name = tensor("add_44_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_44_cast_fp16 = add(x = reduce_mean_68_cast_fp16, y = add_44_y_0_to_fp16)[name = tensor("add_44_cast_fp16")]; - tensor sqrt_22_cast_fp16 = sqrt(x = add_44_cast_fp16)[name = tensor("sqrt_22_cast_fp16")]; - tensor real_div_22_cast_fp16 = real_div(x = sub_44_cast_fp16, y = sqrt_22_cast_fp16)[name = tensor("real_div_22_cast_fp16")]; - tensor reshape_89_shape_0 = const()[name = tensor("reshape_89_shape_0"), val = tensor([1, 256, 512, 512])]; - tensor reshape_89_cast_fp16 = reshape(shape = reshape_89_shape_0, x = real_div_22_cast_fp16)[name = tensor("reshape_89_cast_fp16")]; - tensor add_45_gamma_0_to_fp16 = const()[name = tensor("add_45_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(94486336)))]; - tensor add_45_beta_0_to_fp16 = const()[name = tensor("add_45_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(94486912)))]; - tensor add_45_epsilon_0_to_fp16 = const()[name = tensor("add_45_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_45_cast_fp16 = batch_norm(beta = add_45_beta_0_to_fp16, epsilon = add_45_epsilon_0_to_fp16, gamma = add_45_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_89_cast_fp16)[name = tensor("add_45_cast_fp16")]; - tensor input_165_cast_fp16 = silu(x = add_45_cast_fp16)[name = tensor("input_165_cast_fp16")]; - tensor hidden_states_39_pad_type_0 = const()[name = tensor("hidden_states_39_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_39_pad_0 = const()[name = tensor("hidden_states_39_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_39_strides_0 = const()[name = tensor("hidden_states_39_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_39_dilations_0 = const()[name = tensor("hidden_states_39_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_39_groups_0 = const()[name = tensor("hidden_states_39_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(94487488)))]; - tensor decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(95667200)))]; - tensor hidden_states_39_cast_fp16 = conv(bias = decoder_up_blocks_2_resnets_2_conv2_bias_to_fp16, dilations = hidden_states_39_dilations_0, groups = hidden_states_39_groups_0, pad = hidden_states_39_pad_0, pad_type = hidden_states_39_pad_type_0, strides = hidden_states_39_strides_0, weight = decoder_up_blocks_2_resnets_2_conv2_weight_to_fp16, x = input_165_cast_fp16)[name = tensor("hidden_states_39_cast_fp16")]; - tensor var_500_cast_fp16 = add(x = var_470_cast_fp16, y = hidden_states_39_cast_fp16)[name = tensor("op_500_cast_fp16")]; - tensor input_169_scale_factor_height_0 = const()[name = tensor("input_169_scale_factor_height_0"), val = tensor(0x1p+1)]; - tensor input_169_scale_factor_width_0 = const()[name = tensor("input_169_scale_factor_width_0"), val = tensor(0x1p+1)]; - tensor input_169_cast_fp16 = upsample_nearest_neighbor(scale_factor_height = input_169_scale_factor_height_0, scale_factor_width = input_169_scale_factor_width_0, x = var_500_cast_fp16)[name = tensor("input_169_cast_fp16")]; - tensor input_171_pad_type_0 = const()[name = tensor("input_171_pad_type_0"), val = tensor("custom")]; - tensor input_171_pad_0 = const()[name = tensor("input_171_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_171_strides_0 = const()[name = tensor("input_171_strides_0"), val = tensor([1, 1])]; - tensor input_171_dilations_0 = const()[name = tensor("input_171_dilations_0"), val = tensor([1, 1])]; - tensor input_171_groups_0 = const()[name = tensor("input_171_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(95667776)))]; - tensor decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(96847488)))]; - tensor input_171_cast_fp16 = conv(bias = decoder_up_blocks_2_upsamplers_0_conv_bias_to_fp16, dilations = input_171_dilations_0, groups = input_171_groups_0, pad = input_171_pad_0, pad_type = input_171_pad_type_0, strides = input_171_strides_0, weight = decoder_up_blocks_2_upsamplers_0_conv_weight_to_fp16, x = input_169_cast_fp16)[name = tensor("input_171_cast_fp16")]; - tensor reshape_92_shape_0 = const()[name = tensor("reshape_92_shape_0"), val = tensor([1, 32, 8, 1024, 1024])]; - tensor reshape_92_cast_fp16 = reshape(shape = reshape_92_shape_0, x = input_171_cast_fp16)[name = tensor("reshape_92_cast_fp16")]; - tensor reduce_mean_69_axes_0 = const()[name = tensor("reduce_mean_69_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_69_keep_dims_0 = const()[name = tensor("reduce_mean_69_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_69_cast_fp16 = reduce_mean(axes = reduce_mean_69_axes_0, keep_dims = reduce_mean_69_keep_dims_0, x = reshape_92_cast_fp16)[name = tensor("reduce_mean_69_cast_fp16")]; - tensor sub_46_cast_fp16 = sub(x = reshape_92_cast_fp16, y = reduce_mean_69_cast_fp16)[name = tensor("sub_46_cast_fp16")]; - tensor square_23_cast_fp16 = square(x = sub_46_cast_fp16)[name = tensor("square_23_cast_fp16")]; - tensor reduce_mean_71_axes_0 = const()[name = tensor("reduce_mean_71_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_71_keep_dims_0 = const()[name = tensor("reduce_mean_71_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_71_cast_fp16 = reduce_mean(axes = reduce_mean_71_axes_0, keep_dims = reduce_mean_71_keep_dims_0, x = square_23_cast_fp16)[name = tensor("reduce_mean_71_cast_fp16")]; - tensor add_46_y_0_to_fp16 = const()[name = tensor("add_46_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_46_cast_fp16 = add(x = reduce_mean_71_cast_fp16, y = add_46_y_0_to_fp16)[name = tensor("add_46_cast_fp16")]; - tensor sqrt_23_cast_fp16 = sqrt(x = add_46_cast_fp16)[name = tensor("sqrt_23_cast_fp16")]; - tensor real_div_23_cast_fp16 = real_div(x = sub_46_cast_fp16, y = sqrt_23_cast_fp16)[name = tensor("real_div_23_cast_fp16")]; - tensor reshape_93_shape_0 = const()[name = tensor("reshape_93_shape_0"), val = tensor([1, 256, 1024, 1024])]; - tensor reshape_93_cast_fp16 = reshape(shape = reshape_93_shape_0, x = real_div_23_cast_fp16)[name = tensor("reshape_93_cast_fp16")]; - tensor add_47_gamma_0_to_fp16 = const()[name = tensor("add_47_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(96848064)))]; - tensor add_47_beta_0_to_fp16 = const()[name = tensor("add_47_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(96848640)))]; - tensor add_47_epsilon_0_to_fp16 = const()[name = tensor("add_47_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_47_cast_fp16 = batch_norm(beta = add_47_beta_0_to_fp16, epsilon = add_47_epsilon_0_to_fp16, gamma = add_47_gamma_0_to_fp16, mean = add_37_mean_0_to_fp16, variance = add_37_variance_0_to_fp16, x = reshape_93_cast_fp16)[name = tensor("add_47_cast_fp16")]; - tensor input_175_cast_fp16 = silu(x = add_47_cast_fp16)[name = tensor("input_175_cast_fp16")]; - tensor input_177_pad_type_0 = const()[name = tensor("input_177_pad_type_0"), val = tensor("custom")]; - tensor input_177_pad_0 = const()[name = tensor("input_177_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_177_strides_0 = const()[name = tensor("input_177_strides_0"), val = tensor([1, 1])]; - tensor input_177_dilations_0 = const()[name = tensor("input_177_dilations_0"), val = tensor([1, 1])]; - tensor input_177_groups_0 = const()[name = tensor("input_177_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(96849216)))]; - tensor decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97439104)))]; - tensor input_177_cast_fp16 = conv(bias = decoder_up_blocks_3_resnets_0_conv1_bias_to_fp16, dilations = input_177_dilations_0, groups = input_177_groups_0, pad = input_177_pad_0, pad_type = input_177_pad_type_0, strides = input_177_strides_0, weight = decoder_up_blocks_3_resnets_0_conv1_weight_to_fp16, x = input_175_cast_fp16)[name = tensor("input_177_cast_fp16")]; - tensor reshape_96_shape_0 = const()[name = tensor("reshape_96_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; - tensor reshape_96_cast_fp16 = reshape(shape = reshape_96_shape_0, x = input_177_cast_fp16)[name = tensor("reshape_96_cast_fp16")]; - tensor reduce_mean_72_axes_0 = const()[name = tensor("reduce_mean_72_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_72_keep_dims_0 = const()[name = tensor("reduce_mean_72_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_72_cast_fp16 = reduce_mean(axes = reduce_mean_72_axes_0, keep_dims = reduce_mean_72_keep_dims_0, x = reshape_96_cast_fp16)[name = tensor("reduce_mean_72_cast_fp16")]; - tensor sub_48_cast_fp16 = sub(x = reshape_96_cast_fp16, y = reduce_mean_72_cast_fp16)[name = tensor("sub_48_cast_fp16")]; - tensor square_24_cast_fp16 = square(x = sub_48_cast_fp16)[name = tensor("square_24_cast_fp16")]; - tensor reduce_mean_74_axes_0 = const()[name = tensor("reduce_mean_74_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_74_keep_dims_0 = const()[name = tensor("reduce_mean_74_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_74_cast_fp16 = reduce_mean(axes = reduce_mean_74_axes_0, keep_dims = reduce_mean_74_keep_dims_0, x = square_24_cast_fp16)[name = tensor("reduce_mean_74_cast_fp16")]; - tensor add_48_y_0_to_fp16 = const()[name = tensor("add_48_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_48_cast_fp16 = add(x = reduce_mean_74_cast_fp16, y = add_48_y_0_to_fp16)[name = tensor("add_48_cast_fp16")]; - tensor sqrt_24_cast_fp16 = sqrt(x = add_48_cast_fp16)[name = tensor("sqrt_24_cast_fp16")]; - tensor real_div_24_cast_fp16 = real_div(x = sub_48_cast_fp16, y = sqrt_24_cast_fp16)[name = tensor("real_div_24_cast_fp16")]; - tensor reshape_97_shape_0 = const()[name = tensor("reshape_97_shape_0"), val = tensor([1, 128, 1024, 1024])]; - tensor reshape_97_cast_fp16 = reshape(shape = reshape_97_shape_0, x = real_div_24_cast_fp16)[name = tensor("reshape_97_cast_fp16")]; - tensor add_49_mean_0_to_fp16 = const()[name = tensor("add_49_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97439424)))]; - tensor add_49_variance_0_to_fp16 = const()[name = tensor("add_49_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97439744)))]; - tensor add_49_gamma_0_to_fp16 = const()[name = tensor("add_49_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97440064)))]; - tensor add_49_beta_0_to_fp16 = const()[name = tensor("add_49_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97440384)))]; - tensor add_49_epsilon_0_to_fp16 = const()[name = tensor("add_49_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_49_cast_fp16 = batch_norm(beta = add_49_beta_0_to_fp16, epsilon = add_49_epsilon_0_to_fp16, gamma = add_49_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_97_cast_fp16)[name = tensor("add_49_cast_fp16")]; - tensor input_181_cast_fp16 = silu(x = add_49_cast_fp16)[name = tensor("input_181_cast_fp16")]; - tensor hidden_states_43_pad_type_0 = const()[name = tensor("hidden_states_43_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_43_pad_0 = const()[name = tensor("hidden_states_43_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_43_strides_0 = const()[name = tensor("hidden_states_43_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_43_dilations_0 = const()[name = tensor("hidden_states_43_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_43_groups_0 = const()[name = tensor("hidden_states_43_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97440704)))]; - tensor decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97735680)))]; - tensor hidden_states_43_cast_fp16 = conv(bias = decoder_up_blocks_3_resnets_0_conv2_bias_to_fp16, dilations = hidden_states_43_dilations_0, groups = hidden_states_43_groups_0, pad = hidden_states_43_pad_0, pad_type = hidden_states_43_pad_type_0, strides = hidden_states_43_strides_0, weight = decoder_up_blocks_3_resnets_0_conv2_weight_to_fp16, x = input_181_cast_fp16)[name = tensor("hidden_states_43_cast_fp16")]; - tensor input_tensor_pad_type_0 = const()[name = tensor("input_tensor_pad_type_0"), val = tensor("valid")]; - tensor input_tensor_strides_0 = const()[name = tensor("input_tensor_strides_0"), val = tensor([1, 1])]; - tensor input_tensor_pad_0 = const()[name = tensor("input_tensor_pad_0"), val = tensor([0, 0, 0, 0])]; - tensor input_tensor_dilations_0 = const()[name = tensor("input_tensor_dilations_0"), val = tensor([1, 1])]; - tensor input_tensor_groups_0 = const()[name = tensor("input_tensor_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97736000)))]; - tensor decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97801600)))]; - tensor input_tensor_cast_fp16 = conv(bias = decoder_up_blocks_3_resnets_0_conv_shortcut_bias_to_fp16, dilations = input_tensor_dilations_0, groups = input_tensor_groups_0, pad = input_tensor_pad_0, pad_type = input_tensor_pad_type_0, strides = input_tensor_strides_0, weight = decoder_up_blocks_3_resnets_0_conv_shortcut_weight_to_fp16, x = input_171_cast_fp16)[name = tensor("input_tensor_cast_fp16")]; - tensor var_554_cast_fp16 = add(x = input_tensor_cast_fp16, y = hidden_states_43_cast_fp16)[name = tensor("op_554_cast_fp16")]; - tensor reshape_100_shape_0 = const()[name = tensor("reshape_100_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; - tensor reshape_100_cast_fp16 = reshape(shape = reshape_100_shape_0, x = var_554_cast_fp16)[name = tensor("reshape_100_cast_fp16")]; - tensor reduce_mean_75_axes_0 = const()[name = tensor("reduce_mean_75_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_75_keep_dims_0 = const()[name = tensor("reduce_mean_75_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_75_cast_fp16 = reduce_mean(axes = reduce_mean_75_axes_0, keep_dims = reduce_mean_75_keep_dims_0, x = reshape_100_cast_fp16)[name = tensor("reduce_mean_75_cast_fp16")]; - tensor sub_50_cast_fp16 = sub(x = reshape_100_cast_fp16, y = reduce_mean_75_cast_fp16)[name = tensor("sub_50_cast_fp16")]; - tensor square_25_cast_fp16 = square(x = sub_50_cast_fp16)[name = tensor("square_25_cast_fp16")]; - tensor reduce_mean_77_axes_0 = const()[name = tensor("reduce_mean_77_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_77_keep_dims_0 = const()[name = tensor("reduce_mean_77_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_77_cast_fp16 = reduce_mean(axes = reduce_mean_77_axes_0, keep_dims = reduce_mean_77_keep_dims_0, x = square_25_cast_fp16)[name = tensor("reduce_mean_77_cast_fp16")]; - tensor add_50_y_0_to_fp16 = const()[name = tensor("add_50_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_50_cast_fp16 = add(x = reduce_mean_77_cast_fp16, y = add_50_y_0_to_fp16)[name = tensor("add_50_cast_fp16")]; - tensor sqrt_25_cast_fp16 = sqrt(x = add_50_cast_fp16)[name = tensor("sqrt_25_cast_fp16")]; - tensor real_div_25_cast_fp16 = real_div(x = sub_50_cast_fp16, y = sqrt_25_cast_fp16)[name = tensor("real_div_25_cast_fp16")]; - tensor reshape_101_shape_0 = const()[name = tensor("reshape_101_shape_0"), val = tensor([1, 128, 1024, 1024])]; - tensor reshape_101_cast_fp16 = reshape(shape = reshape_101_shape_0, x = real_div_25_cast_fp16)[name = tensor("reshape_101_cast_fp16")]; - tensor add_51_gamma_0_to_fp16 = const()[name = tensor("add_51_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97801920)))]; - tensor add_51_beta_0_to_fp16 = const()[name = tensor("add_51_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97802240)))]; - tensor add_51_epsilon_0_to_fp16 = const()[name = tensor("add_51_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_51_cast_fp16 = batch_norm(beta = add_51_beta_0_to_fp16, epsilon = add_51_epsilon_0_to_fp16, gamma = add_51_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_101_cast_fp16)[name = tensor("add_51_cast_fp16")]; - tensor input_189_cast_fp16 = silu(x = add_51_cast_fp16)[name = tensor("input_189_cast_fp16")]; - tensor input_191_pad_type_0 = const()[name = tensor("input_191_pad_type_0"), val = tensor("custom")]; - tensor input_191_pad_0 = const()[name = tensor("input_191_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_191_strides_0 = const()[name = tensor("input_191_strides_0"), val = tensor([1, 1])]; - tensor input_191_dilations_0 = const()[name = tensor("input_191_dilations_0"), val = tensor([1, 1])]; - tensor input_191_groups_0 = const()[name = tensor("input_191_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(97802560)))]; - tensor decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98097536)))]; - tensor input_191_cast_fp16 = conv(bias = decoder_up_blocks_3_resnets_1_conv1_bias_to_fp16, dilations = input_191_dilations_0, groups = input_191_groups_0, pad = input_191_pad_0, pad_type = input_191_pad_type_0, strides = input_191_strides_0, weight = decoder_up_blocks_3_resnets_1_conv1_weight_to_fp16, x = input_189_cast_fp16)[name = tensor("input_191_cast_fp16")]; - tensor reshape_104_shape_0 = const()[name = tensor("reshape_104_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; - tensor reshape_104_cast_fp16 = reshape(shape = reshape_104_shape_0, x = input_191_cast_fp16)[name = tensor("reshape_104_cast_fp16")]; - tensor reduce_mean_78_axes_0 = const()[name = tensor("reduce_mean_78_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_78_keep_dims_0 = const()[name = tensor("reduce_mean_78_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_78_cast_fp16 = reduce_mean(axes = reduce_mean_78_axes_0, keep_dims = reduce_mean_78_keep_dims_0, x = reshape_104_cast_fp16)[name = tensor("reduce_mean_78_cast_fp16")]; - tensor sub_52_cast_fp16 = sub(x = reshape_104_cast_fp16, y = reduce_mean_78_cast_fp16)[name = tensor("sub_52_cast_fp16")]; - tensor square_26_cast_fp16 = square(x = sub_52_cast_fp16)[name = tensor("square_26_cast_fp16")]; - tensor reduce_mean_80_axes_0 = const()[name = tensor("reduce_mean_80_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_80_keep_dims_0 = const()[name = tensor("reduce_mean_80_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_80_cast_fp16 = reduce_mean(axes = reduce_mean_80_axes_0, keep_dims = reduce_mean_80_keep_dims_0, x = square_26_cast_fp16)[name = tensor("reduce_mean_80_cast_fp16")]; - tensor add_52_y_0_to_fp16 = const()[name = tensor("add_52_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_52_cast_fp16 = add(x = reduce_mean_80_cast_fp16, y = add_52_y_0_to_fp16)[name = tensor("add_52_cast_fp16")]; - tensor sqrt_26_cast_fp16 = sqrt(x = add_52_cast_fp16)[name = tensor("sqrt_26_cast_fp16")]; - tensor real_div_26_cast_fp16 = real_div(x = sub_52_cast_fp16, y = sqrt_26_cast_fp16)[name = tensor("real_div_26_cast_fp16")]; - tensor reshape_105_shape_0 = const()[name = tensor("reshape_105_shape_0"), val = tensor([1, 128, 1024, 1024])]; - tensor reshape_105_cast_fp16 = reshape(shape = reshape_105_shape_0, x = real_div_26_cast_fp16)[name = tensor("reshape_105_cast_fp16")]; - tensor add_53_gamma_0_to_fp16 = const()[name = tensor("add_53_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98097856)))]; - tensor add_53_beta_0_to_fp16 = const()[name = tensor("add_53_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98098176)))]; - tensor add_53_epsilon_0_to_fp16 = const()[name = tensor("add_53_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_53_cast_fp16 = batch_norm(beta = add_53_beta_0_to_fp16, epsilon = add_53_epsilon_0_to_fp16, gamma = add_53_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_105_cast_fp16)[name = tensor("add_53_cast_fp16")]; - tensor input_195_cast_fp16 = silu(x = add_53_cast_fp16)[name = tensor("input_195_cast_fp16")]; - tensor hidden_states_45_pad_type_0 = const()[name = tensor("hidden_states_45_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_45_pad_0 = const()[name = tensor("hidden_states_45_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_45_strides_0 = const()[name = tensor("hidden_states_45_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_45_dilations_0 = const()[name = tensor("hidden_states_45_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_45_groups_0 = const()[name = tensor("hidden_states_45_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98098496)))]; - tensor decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98393472)))]; - tensor hidden_states_45_cast_fp16 = conv(bias = decoder_up_blocks_3_resnets_1_conv2_bias_to_fp16, dilations = hidden_states_45_dilations_0, groups = hidden_states_45_groups_0, pad = hidden_states_45_pad_0, pad_type = hidden_states_45_pad_type_0, strides = hidden_states_45_strides_0, weight = decoder_up_blocks_3_resnets_1_conv2_weight_to_fp16, x = input_195_cast_fp16)[name = tensor("hidden_states_45_cast_fp16")]; - tensor var_584_cast_fp16 = add(x = var_554_cast_fp16, y = hidden_states_45_cast_fp16)[name = tensor("op_584_cast_fp16")]; - tensor reshape_108_shape_0 = const()[name = tensor("reshape_108_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; - tensor reshape_108_cast_fp16 = reshape(shape = reshape_108_shape_0, x = var_584_cast_fp16)[name = tensor("reshape_108_cast_fp16")]; - tensor reduce_mean_81_axes_0 = const()[name = tensor("reduce_mean_81_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_81_keep_dims_0 = const()[name = tensor("reduce_mean_81_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_81_cast_fp16 = reduce_mean(axes = reduce_mean_81_axes_0, keep_dims = reduce_mean_81_keep_dims_0, x = reshape_108_cast_fp16)[name = tensor("reduce_mean_81_cast_fp16")]; - tensor sub_54_cast_fp16 = sub(x = reshape_108_cast_fp16, y = reduce_mean_81_cast_fp16)[name = tensor("sub_54_cast_fp16")]; - tensor square_27_cast_fp16 = square(x = sub_54_cast_fp16)[name = tensor("square_27_cast_fp16")]; - tensor reduce_mean_83_axes_0 = const()[name = tensor("reduce_mean_83_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_83_keep_dims_0 = const()[name = tensor("reduce_mean_83_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_83_cast_fp16 = reduce_mean(axes = reduce_mean_83_axes_0, keep_dims = reduce_mean_83_keep_dims_0, x = square_27_cast_fp16)[name = tensor("reduce_mean_83_cast_fp16")]; - tensor add_54_y_0_to_fp16 = const()[name = tensor("add_54_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_54_cast_fp16 = add(x = reduce_mean_83_cast_fp16, y = add_54_y_0_to_fp16)[name = tensor("add_54_cast_fp16")]; - tensor sqrt_27_cast_fp16 = sqrt(x = add_54_cast_fp16)[name = tensor("sqrt_27_cast_fp16")]; - tensor real_div_27_cast_fp16 = real_div(x = sub_54_cast_fp16, y = sqrt_27_cast_fp16)[name = tensor("real_div_27_cast_fp16")]; - tensor reshape_109_shape_0 = const()[name = tensor("reshape_109_shape_0"), val = tensor([1, 128, 1024, 1024])]; - tensor reshape_109_cast_fp16 = reshape(shape = reshape_109_shape_0, x = real_div_27_cast_fp16)[name = tensor("reshape_109_cast_fp16")]; - tensor add_55_gamma_0_to_fp16 = const()[name = tensor("add_55_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98393792)))]; - tensor add_55_beta_0_to_fp16 = const()[name = tensor("add_55_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98394112)))]; - tensor add_55_epsilon_0_to_fp16 = const()[name = tensor("add_55_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_55_cast_fp16 = batch_norm(beta = add_55_beta_0_to_fp16, epsilon = add_55_epsilon_0_to_fp16, gamma = add_55_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_109_cast_fp16)[name = tensor("add_55_cast_fp16")]; - tensor input_203_cast_fp16 = silu(x = add_55_cast_fp16)[name = tensor("input_203_cast_fp16")]; - tensor input_205_pad_type_0 = const()[name = tensor("input_205_pad_type_0"), val = tensor("custom")]; - tensor input_205_pad_0 = const()[name = tensor("input_205_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor input_205_strides_0 = const()[name = tensor("input_205_strides_0"), val = tensor([1, 1])]; - tensor input_205_dilations_0 = const()[name = tensor("input_205_dilations_0"), val = tensor([1, 1])]; - tensor input_205_groups_0 = const()[name = tensor("input_205_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98394432)))]; - tensor decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98689408)))]; - tensor input_205_cast_fp16 = conv(bias = decoder_up_blocks_3_resnets_2_conv1_bias_to_fp16, dilations = input_205_dilations_0, groups = input_205_groups_0, pad = input_205_pad_0, pad_type = input_205_pad_type_0, strides = input_205_strides_0, weight = decoder_up_blocks_3_resnets_2_conv1_weight_to_fp16, x = input_203_cast_fp16)[name = tensor("input_205_cast_fp16")]; - tensor reshape_112_shape_0 = const()[name = tensor("reshape_112_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; - tensor reshape_112_cast_fp16 = reshape(shape = reshape_112_shape_0, x = input_205_cast_fp16)[name = tensor("reshape_112_cast_fp16")]; - tensor reduce_mean_84_axes_0 = const()[name = tensor("reduce_mean_84_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_84_keep_dims_0 = const()[name = tensor("reduce_mean_84_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_84_cast_fp16 = reduce_mean(axes = reduce_mean_84_axes_0, keep_dims = reduce_mean_84_keep_dims_0, x = reshape_112_cast_fp16)[name = tensor("reduce_mean_84_cast_fp16")]; - tensor sub_56_cast_fp16 = sub(x = reshape_112_cast_fp16, y = reduce_mean_84_cast_fp16)[name = tensor("sub_56_cast_fp16")]; - tensor square_28_cast_fp16 = square(x = sub_56_cast_fp16)[name = tensor("square_28_cast_fp16")]; - tensor reduce_mean_86_axes_0 = const()[name = tensor("reduce_mean_86_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_86_keep_dims_0 = const()[name = tensor("reduce_mean_86_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_86_cast_fp16 = reduce_mean(axes = reduce_mean_86_axes_0, keep_dims = reduce_mean_86_keep_dims_0, x = square_28_cast_fp16)[name = tensor("reduce_mean_86_cast_fp16")]; - tensor add_56_y_0_to_fp16 = const()[name = tensor("add_56_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_56_cast_fp16 = add(x = reduce_mean_86_cast_fp16, y = add_56_y_0_to_fp16)[name = tensor("add_56_cast_fp16")]; - tensor sqrt_28_cast_fp16 = sqrt(x = add_56_cast_fp16)[name = tensor("sqrt_28_cast_fp16")]; - tensor real_div_28_cast_fp16 = real_div(x = sub_56_cast_fp16, y = sqrt_28_cast_fp16)[name = tensor("real_div_28_cast_fp16")]; - tensor reshape_113_shape_0 = const()[name = tensor("reshape_113_shape_0"), val = tensor([1, 128, 1024, 1024])]; - tensor reshape_113_cast_fp16 = reshape(shape = reshape_113_shape_0, x = real_div_28_cast_fp16)[name = tensor("reshape_113_cast_fp16")]; - tensor add_57_gamma_0_to_fp16 = const()[name = tensor("add_57_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98689728)))]; - tensor add_57_beta_0_to_fp16 = const()[name = tensor("add_57_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98690048)))]; - tensor add_57_epsilon_0_to_fp16 = const()[name = tensor("add_57_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_57_cast_fp16 = batch_norm(beta = add_57_beta_0_to_fp16, epsilon = add_57_epsilon_0_to_fp16, gamma = add_57_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_113_cast_fp16)[name = tensor("add_57_cast_fp16")]; - tensor input_209_cast_fp16 = silu(x = add_57_cast_fp16)[name = tensor("input_209_cast_fp16")]; - tensor hidden_states_pad_type_0 = const()[name = tensor("hidden_states_pad_type_0"), val = tensor("custom")]; - tensor hidden_states_pad_0 = const()[name = tensor("hidden_states_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor hidden_states_strides_0 = const()[name = tensor("hidden_states_strides_0"), val = tensor([1, 1])]; - tensor hidden_states_dilations_0 = const()[name = tensor("hidden_states_dilations_0"), val = tensor([1, 1])]; - tensor hidden_states_groups_0 = const()[name = tensor("hidden_states_groups_0"), val = tensor(1)]; - tensor decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98690368)))]; - tensor decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16 = const()[name = tensor("decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98985344)))]; - tensor hidden_states_cast_fp16 = conv(bias = decoder_up_blocks_3_resnets_2_conv2_bias_to_fp16, dilations = hidden_states_dilations_0, groups = hidden_states_groups_0, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = hidden_states_strides_0, weight = decoder_up_blocks_3_resnets_2_conv2_weight_to_fp16, x = input_209_cast_fp16)[name = tensor("hidden_states_cast_fp16")]; - tensor var_614_cast_fp16 = add(x = var_584_cast_fp16, y = hidden_states_cast_fp16)[name = tensor("op_614_cast_fp16")]; - tensor reshape_116_shape_0 = const()[name = tensor("reshape_116_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; - tensor reshape_116_cast_fp16 = reshape(shape = reshape_116_shape_0, x = var_614_cast_fp16)[name = tensor("reshape_116_cast_fp16")]; - tensor reduce_mean_87_axes_0 = const()[name = tensor("reduce_mean_87_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_87_keep_dims_0 = const()[name = tensor("reduce_mean_87_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_87_cast_fp16 = reduce_mean(axes = reduce_mean_87_axes_0, keep_dims = reduce_mean_87_keep_dims_0, x = reshape_116_cast_fp16)[name = tensor("reduce_mean_87_cast_fp16")]; - tensor sub_58_cast_fp16 = sub(x = reshape_116_cast_fp16, y = reduce_mean_87_cast_fp16)[name = tensor("sub_58_cast_fp16")]; - tensor square_29_cast_fp16 = square(x = sub_58_cast_fp16)[name = tensor("square_29_cast_fp16")]; - tensor reduce_mean_89_axes_0 = const()[name = tensor("reduce_mean_89_axes_0"), val = tensor([2, 3, 4])]; - tensor reduce_mean_89_keep_dims_0 = const()[name = tensor("reduce_mean_89_keep_dims_0"), val = tensor(true)]; - tensor reduce_mean_89_cast_fp16 = reduce_mean(axes = reduce_mean_89_axes_0, keep_dims = reduce_mean_89_keep_dims_0, x = square_29_cast_fp16)[name = tensor("reduce_mean_89_cast_fp16")]; - tensor add_58_y_0_to_fp16 = const()[name = tensor("add_58_y_0_to_fp16"), val = tensor(0x1.1p-20)]; - tensor add_58_cast_fp16 = add(x = reduce_mean_89_cast_fp16, y = add_58_y_0_to_fp16)[name = tensor("add_58_cast_fp16")]; - tensor sqrt_29_cast_fp16 = sqrt(x = add_58_cast_fp16)[name = tensor("sqrt_29_cast_fp16")]; - tensor real_div_29_cast_fp16 = real_div(x = sub_58_cast_fp16, y = sqrt_29_cast_fp16)[name = tensor("real_div_29_cast_fp16")]; - tensor reshape_117_shape_0 = const()[name = tensor("reshape_117_shape_0"), val = tensor([1, 128, 1024, 1024])]; - tensor reshape_117_cast_fp16 = reshape(shape = reshape_117_shape_0, x = real_div_29_cast_fp16)[name = tensor("reshape_117_cast_fp16")]; - tensor add_59_gamma_0_to_fp16 = const()[name = tensor("add_59_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98985664)))]; - tensor add_59_beta_0_to_fp16 = const()[name = tensor("add_59_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98985984)))]; - tensor add_59_epsilon_0_to_fp16 = const()[name = tensor("add_59_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor add_59_cast_fp16 = batch_norm(beta = add_59_beta_0_to_fp16, epsilon = add_59_epsilon_0_to_fp16, gamma = add_59_gamma_0_to_fp16, mean = add_49_mean_0_to_fp16, variance = add_49_variance_0_to_fp16, x = reshape_117_cast_fp16)[name = tensor("add_59_cast_fp16")]; - tensor input_cast_fp16 = silu(x = add_59_cast_fp16)[name = tensor("input_cast_fp16")]; - tensor var_627_pad_type_0 = const()[name = tensor("op_627_pad_type_0"), val = tensor("custom")]; - tensor var_627_pad_0 = const()[name = tensor("op_627_pad_0"), val = tensor([1, 1, 1, 1])]; - tensor var_627_strides_0 = const()[name = tensor("op_627_strides_0"), val = tensor([1, 1])]; - tensor var_627_dilations_0 = const()[name = tensor("op_627_dilations_0"), val = tensor([1, 1])]; - tensor var_627_groups_0 = const()[name = tensor("op_627_groups_0"), val = tensor(1)]; - tensor decoder_conv_out_weight_to_fp16 = const()[name = tensor("decoder_conv_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(98986304)))]; - tensor decoder_conv_out_bias_to_fp16 = const()[name = tensor("decoder_conv_out_bias_to_fp16"), val = tensor([0x1.f78p-4, 0x1.5p-4, 0x1.a28p-5])]; - tensor var_627_cast_fp16 = conv(bias = decoder_conv_out_bias_to_fp16, dilations = var_627_dilations_0, groups = var_627_groups_0, pad = var_627_pad_0, pad_type = var_627_pad_type_0, strides = var_627_strides_0, weight = decoder_conv_out_weight_to_fp16, x = input_cast_fp16)[name = tensor("op_627_cast_fp16")]; - tensor var_627_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("op_627_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; - tensor image = cast(dtype = var_627_cast_fp16_to_fp32_dtype_0, x = var_627_cast_fp16)[name = tensor("cast_37")]; - } -> (image); -} \ No newline at end of file