#!/usr/bin/env python3 import torch import numpy as np from diffusers import StableDiffusionXLPipeline path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe" pipe = StableDiffusionXLPipeline.from_pretrained(path) pipe.unet.set_default_attn_processor() prompt = "An astronaut riding a green horse on Mars" steps = 3 batch_size, height, width, ch = 1, 32, 32, 4 num_elems = batch_size * height * width * ch latents = (torch.arange(num_elems) / num_elems)[:, None, None, None].reshape(batch_size, ch, width, height) print("latents", latents.abs().sum()) image = pipe(prompt, latents=latents, num_inference_steps=3, output_type="np", guidance_scale=7.5).images[0] print(np.abs(image).sum())