from typing import cast, Union import PIL.Image import torch from diffusers import AutoencoderKL from diffusers.image_processor import VaeImageProcessor class EndpointHandler: def __init__(self, path=""): self.device = "cuda" self.dtype = torch.bfloat16 self.vae = cast(AutoencoderKL, AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype).to(self.device, self.dtype).eval()) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) @staticmethod def _unpack_latents(latents, height, width, vae_scale_factor): batch_size, num_patches, channels = latents.shape # VAE applies 8x compression on images but we must also account for packing which requires # latent height and width to be divisible by 2. height = 2 * (int(height) // (vae_scale_factor * 2)) width = 2 * (int(width) // (vae_scale_factor * 2)) latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) latents = latents.permute(0, 3, 1, 4, 2, 5) latents = latents.reshape(batch_size, channels // (2 * 2), height, width) return latents @torch.no_grad() def __call__(self, data) -> Union[torch.Tensor, PIL.Image.Image]: """ Args: data (:obj:): includes the input data and the parameters for the inference. """ tensor = cast(torch.Tensor, data["inputs"]) parameters = cast(dict, data.get("parameters", {})) if tensor.ndim == 3 and ("height" not in parameters or "width" not in parameters): raise ValueError("Expected `height` and `width` in parameters.") height = cast(int, parameters.get("height", 0)) width = cast(int, parameters.get("width", 0)) do_scaling = cast(bool, parameters.get("do_scaling", True)) output_type = cast(str, parameters.get("output_type", "pil")) partial_postprocess = cast(bool, parameters.get("partial_postprocess", False)) if partial_postprocess and output_type != "pt": output_type = "pt" tensor = tensor.to(self.device, self.dtype) if tensor.ndim == 3: tensor = self._unpack_latents(tensor, height, width, self.vae_scale_factor) if do_scaling: tensor = ( tensor / self.vae.config.scaling_factor ) + self.vae.config.shift_factor with torch.no_grad(): image = cast(torch.Tensor, self.vae.decode(tensor, return_dict=False)[0]) if partial_postprocess: image = (image * 0.5 + 0.5).clamp(0, 1) image = image.permute(0, 2, 3, 1).contiguous().float() image = (image * 255).round().to(torch.uint8) elif output_type == "pil": image = cast(PIL.Image.Image, self.image_processor.postprocess(image, output_type="pil")[0]) return image