--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - axolotl - OpenHermes model-index: - name: open-llama-Instruct results: [] datasets: - diabolic6045/OpenHermes-2.5_alpaca_10 pipeline_tag: text-generation --- # open-llama-Instruct - This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [diabolic6045/OpenHermes-2.5_alpaca_10](https://huggingface.co/datasets/diabolic6045/OpenHermes-2.5_alpaca_10) dataset. which is 10% of [OpenHermes 2.5 Dataset](https://huggingface.co/datasets/teknium/OpenHermes-2.5) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results - will be added soon ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.2 - Datasets 3.0.1 - Tokenizers 0.20.1 [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Llama-3.2-1B-Instruct load_in_8bit: false load_in_4bit: false strict: false datasets: - path: diabolic6045/OpenHermes-2.5_alpaca_10 type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./outputs/out hub_model_id: diabolic6045/open-llama-Instruct hf_use_auth_token: true sequence_len: 1024 sample_packing: true pad_to_sequence_len: true wandb_project: open-llama wandb_entity: wandb_watch: all wandb_name: open-llama wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 10 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```