--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - fair_face metrics: - accuracy model-index: - name: initial_ViT_model results: - task: name: Image Classification type: image-classification dataset: name: fair_face type: fair_face config: '0.25' split: train[:5000] args: '0.25' metrics: - name: Accuracy type: accuracy value: 0.152 --- # initial_ViT_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fair_face dataset. It achieves the following results on the evaluation set: - Loss: 4.1666 - Accuracy: 0.152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.7179 | 3.17 | 50 | 4.5313 | 0.094 | | 4.3281 | 6.35 | 100 | 4.2542 | 0.122 | | 4.1225 | 9.52 | 150 | 4.1666 | 0.152 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0