--- license: mit base_model: microsoft/deberta-v3-base datasets: stanfordnlp/imdb tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-base-imdb results: [] --- # deberta-v3-base-imdb This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [imdb](https://huggingface.co/datasets/stanfordnlp/imdb) dataset. It achieves the following results on the evaluation set: - Loss: 0.3594 - Accuracy: 0.9577 - F1: 0.9579 - Precision: 0.9530 - Recall: 0.9629 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3108 | 1.0 | 12500 | 0.2634 | 0.9530 | 0.9529 | 0.9557 | 0.9502 | | 0.2322 | 2.0 | 25000 | 0.2629 | 0.9546 | 0.9552 | 0.9437 | 0.9670 | | 0.1119 | 3.0 | 37500 | 0.2944 | 0.9546 | 0.9550 | 0.9467 | 0.9634 | | 0.0292 | 4.0 | 50000 | 0.3694 | 0.9557 | 0.9564 | 0.9422 | 0.9710 | | 0.0191 | 5.0 | 62500 | 0.3594 | 0.9577 | 0.9579 | 0.9530 | 0.9629 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2