import torch from torch import nn import torch.nn.functional as F from configs.paths_config import model_paths from models.dex_vgg import VGG class AgingLoss(nn.Module): def __init__(self, opts): super(AgingLoss, self).__init__() self.age_net = VGG() ckpt = torch.load(model_paths['age_predictor'], map_location="cpu")['state_dict'] ckpt = {k.replace('-', '_'): v for k, v in ckpt.items()} self.age_net.load_state_dict(ckpt) self.age_net.cuda() self.age_net.eval() self.min_age = 0 self.max_age = 100 self.opts = opts def __get_predicted_age(self, age_pb): predict_age_pb = F.softmax(age_pb) predict_age = torch.zeros(age_pb.size(0)).type_as(predict_age_pb) for i in range(age_pb.size(0)): for j in range(age_pb.size(1)): predict_age[i] += j * predict_age_pb[i][j] return predict_age def extract_ages(self, x): x = F.interpolate(x, size=(224, 224), mode='bilinear') predict_age_pb = self.age_net(x)['fc8'] predicted_age = self.__get_predicted_age(predict_age_pb) return predicted_age def forward(self, y_hat, y, target_ages, id_logs, label=None): n_samples = y.shape[0] if id_logs is None: id_logs = [] input_ages = self.extract_ages(y) / 100. output_ages = self.extract_ages(y_hat) / 100. for i in range(n_samples): # if id logs for the same exists, update the dictionary if len(id_logs) > i: id_logs[i].update({f'input_age_{label}': float(input_ages[i]) * 100, f'output_age_{label}': float(output_ages[i]) * 100, f'target_age_{label}': float(target_ages[i]) * 100}) # otherwise, create a new entry for the sample else: id_logs.append({f'input_age_{label}': float(input_ages[i]) * 100, f'output_age_{label}': float(output_ages[i]) * 100, f'target_age_{label}': float(target_ages[i]) * 100}) loss = F.mse_loss(output_ages, target_ages) return loss, id_logs