SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. This particular checkpoint is finetuned on food and restaurant reviews and is optimized to answer questions from users about this topic.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("deman539/food-review-ft-snowflake-l-f18eeff6-7504-48c7-af10-1d2d85ca8caa")
# Run inference
sentences = [
'What aspects of 10 Downing Street does Ashutosh Tiwari highlight in his review? ',
'Restaurant: 10 Downing Street\nReviewer: Ashutosh Tiwari\nReview: 10D is one of the best places to hangout witj friends and families. Great ambience with awesome views. Food and staff behaviour is very kind.\nRating: 4\nMetadata: 4 Reviews , 84 Followers\nTime: 1/5/2019 17:17\nPictures: 0\n7514:',
'Restaurant: Cafe Eclat\nReviewer: Kamal Prakash\nReview: I really liked the ambience. The blue cushions complimented the tables with wooden finish. The glass doors added to the elegance. The place was very calm. I had the cheesecake here, it literally melted in my mouth, absolutely loved it. One downside is that the place is a bit expensive.\nRating: 4\nMetadata: 14 Reviews , 31 Followers\nTime: 5/10/2018 18:59\nPictures: 2\n7514:',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.905 |
cosine_accuracy@3 | 0.975 |
cosine_accuracy@5 | 0.985 |
cosine_accuracy@10 | 0.995 |
cosine_precision@1 | 0.905 |
cosine_precision@3 | 0.325 |
cosine_precision@5 | 0.197 |
cosine_precision@10 | 0.0995 |
cosine_recall@1 | 0.905 |
cosine_recall@3 | 0.975 |
cosine_recall@5 | 0.985 |
cosine_recall@10 | 0.995 |
cosine_ndcg@10 | 0.9548 |
cosine_mrr@10 | 0.9413 |
cosine_map@100 | 0.9418 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,600 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 20.32 tokens
- max: 33 tokens
- min: 12 tokens
- mean: 102.78 tokens
- max: 247 tokens
- Samples:
sentence_0 sentence_1 What aspects of Khaan Saab did Dakshay Singh highlight in his review?
Restaurant: Khaan Saab
Reviewer: Dakshay Singh
Review: Great food. Excellent ambience for a nice quiet dinner for family. Zomato gold benefits can be availed here. Excellent customer service. Great service by Tapan. Very happy
Rating: 5
Metadata: 9 Reviews , 9 Followers
Time: 4/8/2019 22:23
Pictures: 0
7514:Who provided great service according to Dakshay Singh's review of Khaan Saab?
Restaurant: Khaan Saab
Reviewer: Dakshay Singh
Review: Great food. Excellent ambience for a nice quiet dinner for family. Zomato gold benefits can be availed here. Excellent customer service. Great service by Tapan. Very happy
Rating: 5
Metadata: 9 Reviews , 9 Followers
Time: 4/8/2019 22:23
Pictures: 0
7514:What specific type of parathas did Raj Rohit praise in his review of Triptify?
Restaurant: Triptify
Reviewer: Raj Rohit
Review: Oh my my. What great parathas. These guys know their game when it comes to parathas.
The corn and cheese parathas are brilliant + their sides blend so perfectly with the parathas. Brilliant packaging too.
Rating: 5
Metadata: 124 Reviews , 372 Followers
Time: 8/25/2018 12:58
Pictures: 1
7514: - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.3125 | 50 | - | 0.9239 |
0.625 | 100 | - | 0.9313 |
0.9375 | 150 | - | 0.9307 |
1.0 | 160 | - | 0.9301 |
1.25 | 200 | - | 0.9382 |
1.5625 | 250 | - | 0.9454 |
1.875 | 300 | - | 0.9501 |
2.0 | 320 | - | 0.9532 |
2.1875 | 350 | - | 0.9501 |
2.5 | 400 | - | 0.9559 |
2.8125 | 450 | - | 0.9505 |
3.0 | 480 | - | 0.9529 |
3.125 | 500 | 0.5558 | 0.9518 |
3.4375 | 550 | - | 0.9425 |
3.75 | 600 | - | 0.9547 |
4.0 | 640 | - | 0.9551 |
4.0625 | 650 | - | 0.9539 |
4.375 | 700 | - | 0.9637 |
4.6875 | 750 | - | 0.9564 |
5.0 | 800 | - | 0.9624 |
5.3125 | 850 | - | 0.9648 |
5.625 | 900 | - | 0.9577 |
5.9375 | 950 | - | 0.9601 |
6.0 | 960 | - | 0.9632 |
6.25 | 1000 | 0.0655 | 0.9613 |
6.5625 | 1050 | - | 0.9544 |
6.875 | 1100 | - | 0.9551 |
7.0 | 1120 | - | 0.9558 |
7.1875 | 1150 | - | 0.9562 |
7.5 | 1200 | - | 0.9566 |
7.8125 | 1250 | - | 0.9546 |
8.0 | 1280 | - | 0.9569 |
8.125 | 1300 | - | 0.9584 |
8.4375 | 1350 | - | 0.9573 |
8.75 | 1400 | - | 0.9566 |
9.0 | 1440 | - | 0.9569 |
9.0625 | 1450 | - | 0.9552 |
9.375 | 1500 | 0.0417 | 0.9549 |
9.6875 | 1550 | - | 0.9548 |
10.0 | 1600 | - | 0.9548 |
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 24
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for deman539/food-review-ft-snowflake-l-f18eeff6-7504-48c7-af10-1d2d85ca8caa
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.905
- Cosine Accuracy@3 on Unknownself-reported0.975
- Cosine Accuracy@5 on Unknownself-reported0.985
- Cosine Accuracy@10 on Unknownself-reported0.995
- Cosine Precision@1 on Unknownself-reported0.905
- Cosine Precision@3 on Unknownself-reported0.325
- Cosine Precision@5 on Unknownself-reported0.197
- Cosine Precision@10 on Unknownself-reported0.099
- Cosine Recall@1 on Unknownself-reported0.905
- Cosine Recall@3 on Unknownself-reported0.975