{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb309e20990>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674212827479639343, "learning_rate": 0.0, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": { ":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPj9zywksQ+xr67vD4Aqr4NP8i8ynjzvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg==" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4q3zb5eEbkCUhpRSlIwBbJRNCQGMAXSUR0CgPYdTP0I1dX2UKGgGaAloD0MI2nHD76Y7cECUhpRSlGgVTSIBaBZHQKA/L5ooNNJ1fZQoaAZoCWgPQwh4DfrSGwBxQJSGlFKUaBVNHQFoFkdAoEASVlf7anV9lChoBmgJaA9DCOFfBI2ZjXBAlIaUUpRoFU0PAWgWR0CgQPBUaQ3hdX2UKGgGaAloD0MIK27cYn4+IsCUhpRSlGgVS6NoFkdAoEFoLeANG3V9lChoBmgJaA9DCNBE2PB02nJAlIaUUpRoFU08AWgWR0CgQyr5AQg+dX2UKGgGaAloD0MI3J+Lhkw2cUCUhpRSlGgVS/1oFkdAoEQCNhmXgXV9lChoBmgJaA9DCJC93v3xNHBAlIaUUpRoFUvtaBZHQKBEwnfl6qt1fZQoaAZoCWgPQwha1ZKOcopCQJSGlFKUaBVL0GgWR0CgRW4REnb7dX2UKGgGaAloD0MIfgBSmziRc0CUhpRSlGgVTScBaBZHQKBGW1CPZIx1fZQoaAZoCWgPQwivXG+bKT5wQJSGlFKUaBVNNQFoFkdAoEf7tkWhy3V9lChoBmgJaA9DCOs4fqj01HBAlIaUUpRoFUvraBZHQKBIrOEdvKl1fZQoaAZoCWgPQwhNLVvry+1yQJSGlFKUaBVNDAFoFkdAoEl6XY150XV9lChoBmgJaA9DCLgehesRoXBAlIaUUpRoFUv2aBZHQKBK/A3T/hl1fZQoaAZoCWgPQwiPqbuyixBzQJSGlFKUaBVNMAFoFkdAoEwLoSteU3V9lChoBmgJaA9DCOse2Vy1eHBAlIaUUpRoFU0fAWgWR0CgTQhE8aGYdX2UKGgGaAloD0MI8+UF2Ed5TECUhpRSlGgVS65oFkdAoE2So60Y0nV9lChoBmgJaA9DCORME7bfhnBAlIaUUpRoFU0QAWgWR0CgTydn003wdX2UKGgGaAloD0MIiuYBLLJQcUCUhpRSlGgVTQ8BaBZHQKBQGY0EX+F1fZQoaAZoCWgPQwgKE0az8hJxQJSGlFKUaBVL92gWR0CgUOR1X/5tdX2UKGgGaAloD0MIySJNvAOcF0CUhpRSlGgVS6xoFkdAoFFiPQv6CXV9lChoBmgJaA9DCAOWXMUidHFAlIaUUpRoFUvvaBZHQKBSIS+QEIR1fZQoaAZoCWgPQwiXj6Skx+pxQJSGlFKUaBVNHwFoFkdAoFPPJNj9XXV9lChoBmgJaA9DCIVefxKf+x7AlIaUUpRoFUu8aBZHQKBUaHjZL7J1fZQoaAZoCWgPQwg/U69bhAdvQJSGlFKUaBVNAwFoFkdAoFU05hjOLXV9lChoBmgJaA9DCLRzmgXadUNAlIaUUpRoFUujaBZHQKBVsKcd5pt1fZQoaAZoCWgPQwi1G33MB/tuQJSGlFKUaBVNLgFoFkdAoFd6Oearm3V9lChoBmgJaA9DCIielEkNq21AlIaUUpRoFU0vAWgWR0CgWIozFdcCdX2UKGgGaAloD0MIFyr/Wh4ocECUhpRSlGgVTTABaBZHQKBZhs4T9Kp1fZQoaAZoCWgPQwh/2xMkdiJxQJSGlFKUaBVNEQFoFkdAoFpecriEQHV9lChoBmgJaA9DCB3MJsBwXXBAlIaUUpRoFU1NAWgWR0CgXAgaFVT8dX2UKGgGaAloD0MINnaJ6m33cECUhpRSlGgVTQIBaBZHQKBc39n9Nvh1fZQoaAZoCWgPQwh8KNGSx3lUQJSGlFKUaBVN6ANoFkdAoGE+3UhFE3V9lChoBmgJaA9DCEG4Agp1vnJAlIaUUpRoFU0bAWgWR0CgYgmp++dtdX2UKGgGaAloD0MI0NVW7C99QECUhpRSlGgVS9loFkdAoGNLjDKoynV9lChoBmgJaA9DCIogzsPJXHJAlIaUUpRoFU0bAWgWR0CgZBtZNfw7dX2UKGgGaAloD0MImpXtQ956bkCUhpRSlGgVTTEBaBZHQKBlCyeqaPV1fZQoaAZoCWgPQwjOUUfHFa9wQJSGlFKUaBVNcQFoFkdAoGYsona37XV9lChoBmgJaA9DCG3kuiklWXFAlIaUUpRoFU0yAWgWR0CgZ7QOnVG1dX2UKGgGaAloD0MITwRxHo7ZcECUhpRSlGgVTRUBaBZHQKBolvPTodN1fZQoaAZoCWgPQwh2wHXFDNlrQJSGlFKUaBVNHwFoFkdAoGls0YTCcnV9lChoBmgJaA9DCLtCHyxjtG5AlIaUUpRoFU0tAWgWR0CgavlCCz1LdX2UKGgGaAloD0MIlx3iH3YCcUCUhpRSlGgVTRoBaBZHQKBr1dIoVmB1fZQoaAZoCWgPQwgQzTy5polwQJSGlFKUaBVNPgFoFkdAoGzabvw3HnV9lChoBmgJaA9DCNSZe0i4THBAlIaUUpRoFU0YAWgWR0Cgba5k9U0fdX2UKGgGaAloD0MImn0eozxvQ0CUhpRSlGgVS69oFkdAoG7TSPU8WHV9lChoBmgJaA9DCMgkI2fhWnBAlIaUUpRoFU0qAWgWR0Cgb8LJ8v25dX2UKGgGaAloD0MIZCMQr+tmckCUhpRSlGgVTQoBaBZHQKBwlQ0GeMB1fZQoaAZoCWgPQwjSHcTOFBJJQJSGlFKUaBVLuWgWR0CgcSFaSs8xdX2UKGgGaAloD0MIjBTKwtd0cECUhpRSlGgVTRkBaBZHQKBynag26091fZQoaAZoCWgPQwjZtb3dEv5sQJSGlFKUaBVNPwFoFkdAoHOtEy+HrXV9lChoBmgJaA9DCEtzK4SVi3JAlIaUUpRoFU0HAWgWR0CgdH0D2alUdX2UKGgGaAloD0MIFF6CUx9JcUCUhpRSlGgVTT4BaBZHQKB2KWNWEK51fZQoaAZoCWgPQwjy6bEtw4FyQJSGlFKUaBVNJgFoFkdAoHcamfoRqXV9lChoBmgJaA9DCHE8nwE1UXFAlIaUUpRoFU0dAWgWR0CgeAr+xW1ddX2UKGgGaAloD0MID7VtGAXbb0CUhpRSlGgVTQ0BaBZHQKB46MnZ00Z1fZQoaAZoCWgPQwiCcXDpmARyQJSGlFKUaBVNQwFoFkdAoHqKya/h2nV9lChoBmgJaA9DCJFCWfh6FXJAlIaUUpRoFU2vA2gWR0Cgf0U1IiC8dX2UKGgGaAloD0MIBiy5igWUckCUhpRSlGgVS/hoFkdAoIAOfmLcbnV9lChoBmgJaA9DCKhWX13VMHFAlIaUUpRoFU03AWgWR0CggRz2OAAidX2UKGgGaAloD0MIURN9Psp0OkCUhpRSlGgVS7NoFkdAoIGlEmY0EXV9lChoBmgJaA9DCJViR+NQ/GBAlIaUUpRoFU3oA2gWR0CghipQ+EAYdX2UKGgGaAloD0MIIAw8915JcECUhpRSlGgVTSkBaBZHQKCHv/aQFLZ1fZQoaAZoCWgPQwhCB13CIRpgQJSGlFKUaBVN6ANoFkdAoIzgsK9f1HV9lChoBmgJaA9DCD6WPnTB7W5AlIaUUpRoFU0RAWgWR0CgjbdGI9DAdX2UKGgGaAloD0MIibFMv8StbkCUhpRSlGgVS/9oFkdAoI6DjNpudnV9lChoBmgJaA9DCHizBu+rbEZAlIaUUpRoFUvOaBZHQKCPHOUMXrN1fZQoaAZoCWgPQwjK+WLvBQlwQJSGlFKUaBVNVAFoFkdAoJD7uQZGa3V9lChoBmgJaA9DCEBrfvwlsm9AlIaUUpRoFUvqaBZHQKCRuVHFxXJ1fZQoaAZoCWgPQwj4pumzgyFuQJSGlFKUaBVNbwJoFkdAoJQ7i0fHP3V9lChoBmgJaA9DCDSEY5b9knBAlIaUUpRoFU0dAWgWR0CgldXqiXY2dX2UKGgGaAloD0MIS6shcU+bckCUhpRSlGgVTRwBaBZHQKCWtbWVeKN1fZQoaAZoCWgPQwjMYIxIlIlvQJSGlFKUaBVNFAFoFkdAoJeror4FinV9lChoBmgJaA9DCKtf6Xw4TnJAlIaUUpRoFU0DAWgWR0CgmU2cSXdCdX2UKGgGaAloD0MI4/xNKEQAMkCUhpRSlGgVS7VoFkdAoJnm9g4OtnV9lChoBmgJaA9DCB43/G46THFAlIaUUpRoFU0EAWgWR0Cgmr8W0qpcdX2UKGgGaAloD0MIkMAffj7OcECUhpRSlGgVTSABaBZHQKCbuZYxL011fZQoaAZoCWgPQwjOpiOAm+dgQJSGlFKUaBVN6ANoFkdAoKB+xD9fkXV9lChoBmgJaA9DCDkoYaZtGGJAlIaUUpRoFU3oA2gWR0CgpRpCBwuNdX2UKGgGaAloD0MInyKHiBtmcECUhpRSlGgVS/ZoFkdAoKXZ20Re1XV9lChoBmgJaA9DCB4zUBk/4HBAlIaUUpRoFU0jAWgWR0Cgp2yC4BmxdX2UKGgGaAloD0MIo5Ol1jsFcECUhpRSlGgVS/ZoFkdAoKg0+otL+XV9lChoBmgJaA9DCL68APvokm9AlIaUUpRoFU0gAWgWR0CgqR4BNmDldX2UKGgGaAloD0MI6brwg/PPYUCUhpRSlGgVTegDaBZHQKCuZ3aBZp11fZQoaAZoCWgPQwgFGQEVjgAsQJSGlFKUaBVL12gWR0CgrxS6lLvkdX2UKGgGaAloD0MIy9dl+M9gcECUhpRSlGgVTQkBaBZHQKCwpIZIg/11fZQoaAZoCWgPQwgQJO8cSmdxQJSGlFKUaBVNGQFoFkdAoLGEXDWK/HV9lChoBmgJaA9DCKbxC6/kAHFAlIaUUpRoFU0rAWgWR0CgsmzqbBoFdX2UKGgGaAloD0MIK/cCs8L8ckCUhpRSlGgVS+1oFkdAoLMa1og3cnV9lChoBmgJaA9DCA360tsfaHFAlIaUUpRoFU0cAWgWR0CgtJj/dZaFdX2UKGgGaAloD0MI6iXGMv2Wb0CUhpRSlGgVTRMBaBZHQKC1d14gRsd1fZQoaAZoCWgPQwgonrMFhJVwQJSGlFKUaBVNGQFoFkdAoLZW3KB/Z3V9lChoBmgJaA9DCAXgn1Ll33BAlIaUUpRoFU0ZAWgWR0Cgt/d07r9mdX2UKGgGaAloD0MIxQJf0a0JQUCUhpRSlGgVS+VoFkdAoLiubqhUR3V9lChoBmgJaA9DCPuytFNzc3FAlIaUUpRoFUvjaBZHQKC5XFhoduJ1fZQoaAZoCWgPQwjx8J4DC2xxQJSGlFKUaBVL7GgWR0CguhRKHwgDdX2UKGgGaAloD0MIUWfuIeE+bkCUhpRSlGgVTQoBaBZHQKC661dgOSZ1fZQoaAZoCWgPQwjyCdl521dwQJSGlFKUaBVNHwFoFkdAoLyRmTTvzHV9lChoBmgJaA9DCPEqa5uipHFAlIaUUpRoFU0oAWgWR0CgvX8oQWepdX2UKGgGaAloD0MIZDxKJfx4cECUhpRSlGgVTTwBaBZHQKC+hymQ8wJ1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": { ":type:": "", ":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHjxpcHl0aG9uLWlucHV0LTUtMjNlYmRhZWE0YTNkPpSMCDxsYW1iZGE+lEsNQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }