--- license: mit pipeline_tag: text-to-image tags: - openvino - text-to-image inference: false --- ## Model Descriptions: This repo contains OpenVino model files for [madebyollin's Tiny AutoEncoder for Stable Diffusion](https://huggingface.co/madebyollin/taesd). ## Using in 🧨 diffusers To install the requirements for this demo, do pip install "optimum-intel[openvino, diffusers]". ```python from huggingface_hub import snapshot_download from optimum.intel.openvino import OVStableDiffusionPipeline from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVModelVaeEncoder, OVBaseModel # Create class wrappers which allow us to specify model_dir of TAESD instead of original pipeline dir class CustomOVModelVaeDecoder(OVModelVaeDecoder): def __init__( self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, ): super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) class CustomOVModelVaeEncoder(OVModelVaeEncoder): def __init__( self, model: openvino.runtime.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, ): super(OVModelVaeEncoder, self).__init__(model, parent_model, ov_config, "vae_encoder", model_dir) pipe = OVStableDiffusionPipeline.from_pretrained("OpenVINO/stable-diffusion-1-5-fp32", compile=False) # Inject TAESD taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino") pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) pipe.vae_encoder = CustomOVModelVaeEncoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_encoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) pipe.compile() prompt = "plant pokemon in jungle" output = pipe(prompt, num_inference_steps=50, output_type="pil") output.images[0].save("result.png") ```