language: multilingual
tags:
- question-answering
datasets:
- squad_v2
license: cc-by-4.0
Multilingual XLM-RoBERTa large for QA on various languages
Overview
Language model: xlm-roberta-large
Language: Multilingual
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD dev set - German MLQA - German XQuAD
Training run: MLFlow link
Infrastructure: 4x Tesla v100
Hyperparameters
batch_size = 32
n_epochs = 3
base_LM_model = "xlm-roberta-large"
max_seq_len = 256
learning_rate = 1e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
Performance
Evaluated on the SQuAD 2.0 English dev set with the official eval script.
"exact": 79.45759285774446,
"f1": 83.79259828925511,
"total": 11873,
"HasAns_exact": 71.96356275303644,
"HasAns_f1": 80.6460053117963,
"HasAns_total": 5928,
"NoAns_exact": 86.93019343986543,
"NoAns_f1": 86.93019343986543,
"NoAns_total": 5945
Evaluated on German MLQA: test-context-de-question-de.json
"exact": 49.34691166703564,
"f1": 66.15582561674236,
"total": 4517,
Evaluated on German XQuAD: xquad.de.json
"exact": 61.51260504201681,
"f1": 78.80206098332569,
"total": 1190,
Usage
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/xlm-roberta-large-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
In FARM
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import QAInferencer
model_name = "deepset/xlm-roberta-large-squad2"
# a) Get predictions
nlp = QAInferencer.load(model_name)
QA_input = [{"questions": ["Why is model conversion important?"],
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
In haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-large-squad2")
# or
reader = TransformersReader(model="deepset/xlm-roberta-large-squad2",tokenizer="deepset/xlm-roberta-large-squad2")
Authors
Branden Chan: branden.chan [at] deepset.ai
Timo Möller: timo.moeller [at] deepset.ai
Malte Pietsch: malte.pietsch [at] deepset.ai
Tanay Soni: tanay.soni [at] deepset.ai
About us
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
Some of our work:
- German BERT (aka "bert-base-german-cased")
- GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")
- FARM
- Haystack
Get in touch: Twitter | LinkedIn | Slack | GitHub Discussions | Website
By the way: we're hiring!