--- language: en datasets: - squad_v2 license: cc-by-4.0 --- # roberta-base-squad2 for QA on COVID-19 ## Overview **Language model:** deepset/roberta-base-squad2 **Language:** English **Downstream-task:** Extractive QA **Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json) **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/01_basic_qa_pipeline) **Infrastructure**: Tesla v100 ## Hyperparameters ``` batch_size = 24 n_epochs = 3 base_LM_model = "deepset/roberta-base-squad2" max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.1 doc_stride = 128 xval_folds = 5 dev_split = 0 no_ans_boost = -100 ``` --- license: cc-by-4.0 --- ## Performance 5-fold cross-validation on the data set led to the following results: **Single EM-Scores:** [0.222, 0.123, 0.234, 0.159, 0.158] **Single F1-Scores:** [0.476, 0.493, 0.599, 0.461, 0.465] **Single top\\_3\\_recall Scores:** [0.827, 0.776, 0.860, 0.771, 0.777] **XVAL EM:** 0.17890995260663506 **XVAL f1:** 0.49925444207319924 **XVAL top\\_3\\_recall:** 0.8021327014218009 This model is the model obtained from the **third** fold of the cross-validation. ## Usage ### In Haystack For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-covid") # or reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2-covid") ``` ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2-covid" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Branden Chan:** branden.chan@deepset.ai **Timo Möller:** timo.moeller@deepset.ai **Malte Pietsch:** malte.pietsch@deepset.ai **Tanay Soni:** tanay.soni@deepset.ai **Bogdan Kostić:** bogdan.kostic@deepset.ai ## About us
For more info on Haystack, visit our GitHub repo and Documentation. We also have a Discord community open to everyone!
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)