--- language: en datasets: - squad_v2 license: cc-by-4.0 --- # roberta-base-squad2 for Extractive QA on COVID-19 ## Overview **Language model:** deepset/roberta-base-squad2 **Language:** English **Downstream-task:** Extractive QA **Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json) **Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline) **Infrastructure**: Tesla v100 ## Hyperparameters ``` batch_size = 24 n_epochs = 3 base_LM_model = "deepset/roberta-base-squad2" max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.1 doc_stride = 128 xval_folds = 5 dev_split = 0 no_ans_boost = -100 ``` --- license: cc-by-4.0 --- ## Performance 5-fold cross-validation on the data set led to the following results: **Single EM-Scores:** [0.222, 0.123, 0.234, 0.159, 0.158] **Single F1-Scores:** [0.476, 0.493, 0.599, 0.461, 0.465] **Single top\\_3\\_recall Scores:** [0.827, 0.776, 0.860, 0.771, 0.777] **XVAL EM:** 0.17890995260663506 **XVAL f1:** 0.49925444207319924 **XVAL top\\_3\\_recall:** 0.8021327014218009 This model is the model obtained from the **third** fold of the cross-validation. ## Usage ### In Haystack Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/): ```python # After running pip install haystack-ai "transformers[torch,sentencepiece]" from haystack import Document from haystack.components.readers import ExtractiveReader docs = [ Document(content="Python is a popular programming language"), Document(content="python ist eine beliebte Programmiersprache"), ] reader = ExtractiveReader(model="deepset/roberta-base-squad2") reader.warm_up() question = "What is a popular programming language?" result = reader.run(query=question, documents=docs) # {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]} ``` For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline). ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Authors **Branden Chan:** branden.chan@deepset.ai **Timo Möller:** timo.moeller@deepset.ai **Malte Pietsch:** malte.pietsch@deepset.ai **Tanay Soni:** tanay.soni@deepset.ai **Bogdan Kostić:** bogdan.kostic@deepset.ai ## About us
For more info on Haystack, visit our GitHub repo and Documentation. We also have a Discord community open to everyone!
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)