--- language: en datasets: - squad_v2 license: cc-by-4.0 model-index: - name: deepset/electra-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 77.6074 verified: true - name: F1 type: f1 value: 81.7181 verified: true - task: type: question-answering name: Question Answering dataset: name: squadshifts type: squadshifts config: amazon split: test metrics: - name: Exact Match type: exact_match value: 64.6108 verified: true - name: F1 type: f1 value: 80.0934 verified: true --- # electra-base for QA ## Overview **Language model:** electra-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) **Infrastructure**: 1x Tesla v100 ## Hyperparameters ``` seed=42 batch_size = 32 n_epochs = 5 base_LM_model = "google/electra-base-discriminator" max_seq_len = 384 learning_rate = 1e-4 lr_schedule = LinearWarmup warmup_proportion = 0.1 doc_stride=128 max_query_length=64 ``` ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 77.30144024256717, "f1": 81.35438272008543, "total": 11873, "HasAns_exact": 74.34210526315789, "HasAns_f1": 82.45961302894314, "HasAns_total": 5928, "NoAns_exact": 80.25231286795626, "NoAns_f1": 80.25231286795626, "NoAns_total": 5945 ``` ## Usage ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/electra-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and lets people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### In FARM ```python from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import Inferencer model_name = "deepset/electra-base-squad2" # a) Get predictions nlp = Inferencer.load(model_name, task_type="question_answering") QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and lets people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name) ``` ### In haystack For doing QA at scale (i.e. many docs instead of a single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/electra-base-squad2") # or reader = TransformersReader(model="deepset/electra-base-squad2",tokenizer="deepset/electra-base-squad2") ``` ## Authors Vaishali Pal `vaishali.pal [at] deepset.ai` Branden Chan: `branden.chan [at] deepset.ai` Timo Möller: `timo.moeller [at] deepset.ai` Malte Pietsch: `malte.pietsch [at] deepset.ai` Tanay Soni: `tanay.soni [at] deepset.ai` ## About us ![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo) We bring NLP to the industry via open source! Our focus: Industry specific language models & large scale QA systems. Some of our work: - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) - [FARM](https://github.com/deepset-ai/FARM) - [Haystack](https://github.com/deepset-ai/haystack/) Get in touch: [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)