--- license: other license_name: deepseek license_link: LICENSE model-index: - name: deepseek-llm-67b-base results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.1 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 71.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 51.08 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 56.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-67b-base name: Open LLM Leaderboard ---

DeepSeek Chat

[🏠Homepage] | [🤖 Chat with DeepSeek LLM] | [Discord] | [Wechat(微信)]


### 1. Introduction of Deepseek LLM Introducing DeepSeek LLM, an advanced language model comprising 67 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community. ### 2. Model Summary `deepseek-llm-67b-base` is a 67B parameter model with Grouped-Query Attention trained on 2 trillion tokens from scratch. - **Home Page:** [DeepSeek](https://deepseek.com/) - **Repository:** [deepseek-ai/deepseek-LLM](https://github.com/deepseek-ai/deepseek-LLM) - **Chat With DeepSeek LLM:** [DeepSeek-LLM](https://chat.deepseek.com/) ### 3. How to Use Here give some examples of how to use our model. #### Text Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/deepseek-llm-67b-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ### 4. License This code repository is licensed under the MIT License. The use of DeepSeek LLM models is subject to the Model License. DeepSeek LLM supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-LLM/blob/main/LICENSE-MODEL) for more details. ### 5. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_deepseek-ai__deepseek-llm-67b-base) | Metric |Value| |---------------------------------|----:| |Avg. |69.38| |AI2 Reasoning Challenge (25-Shot)|65.44| |HellaSwag (10-Shot) |87.10| |MMLU (5-Shot) |71.78| |TruthfulQA (0-shot) |51.08| |Winogrande (5-shot) |84.14| |GSM8k (5-shot) |56.71|