from typing import Dict, List, Any from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from optimum.onnxruntime import ORTModelForSequenceClassification import torch from PIL import Image import numpy as np import librosa class EndpointHandler: def __init__(self, path=""): """ Initialize the handler. This loads the tokenizer and model required for inference. We will load the `ronai-multimodal-perceiver-tsx` model for multimodal input handling. """ # Load the tokenizer and model self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = ORTModelForSequenceClassification.from_pretrained(path) # Initialize a pipeline for text classification (adjust task type if needed) self.pipeline = pipeline("text-classification", model=self.model, tokenizer=self.tokenizer) def preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]: """ Preprocess input data based on the modality. This handler supports text, image, and audio data. """ inputs = data.get("inputs", None) if isinstance(inputs, str): # Preprocessing for text input tokens = self.tokenizer(inputs, return_tensors="pt") return tokens elif isinstance(inputs, Image.Image): # Preprocessing for image input (convert to tensor) image = np.array(inputs) image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension return image_tensor elif isinstance(inputs, np.ndarray): # Preprocessing for raw array input (e.g., audio, point clouds) return torch.tensor(inputs).unsqueeze(0) elif isinstance(inputs, bytes): # Preprocessing for audio input (convert to mel spectrogram) audio, sr = librosa.load(inputs, sr=None) mel_spectrogram = librosa.feature.melspectrogram(audio, sr=sr) mel_tensor = torch.tensor(mel_spectrogram).unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions return mel_tensor else: raise ValueError("Unsupported input type. Must be string (text), image (PIL), or array (audio, etc.).") def postprocess(self, outputs: Any) -> List[Dict[str, Any]]: """ Post-process the model output to a human-readable format. For text classification, this returns label and score. """ logits = outputs.logits probabilities = torch.nn.functional.softmax(logits, dim=-1) predicted_class_id = probabilities.argmax().item() score = probabilities[0, predicted_class_id].item() return [{"label": self.model.config.id2label[predicted_class_id], "score": score}] def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ Handles the incoming request, processes the input, runs inference, and returns results. Args: data (Dict[str, Any]): The input data for inference. - data["inputs"] could be a string (text), PIL.Image (image), np.ndarray (audio or point clouds). Returns: A list of dictionaries containing the model's prediction. """ # Step 1: Preprocess input data preprocessed_data = self.preprocess(data) # Step 2: Perform model inference outputs = self.pipeline(preprocessed_data) # Step 3: Post-process and return the predictions return self.postprocess(outputs)