Zero-Shot Image Classification
ONNX
art
ccip_onnx / README.md
narugo's picture
Update README.md
0799626
|
raw
history blame
2.12 kB
metadata
license: mit
datasets:
  - deepghs/character_similarity
metrics:
  - f1
pipeline_tag: feature-extraction
tags:
  - art
Model F1 Score Precision Recall Threshold Cluster_2 Cluster_Free
ccip-caformer-2-randaug-pruned_fp32 0.78561 0.800148 0.771592 0.171053 0.686617 0.728195
ccip-caformer-23_randaug_fp32 0.81625 0.854134 0.781585 0.136797 0.745697 0.8068
ccip-caformer-24-randaug-pruned 0.917211 0.933481 0.901499 0.178475 0.890366 0.922375
ccip-caformer-2_fp32 0.755125 0.790172 0.723055 0.141275 0.64977 0.718516
ccip-caformer-4_fp32 0.844967 0.870553 0.820842 0.18367 0.795565 0.868133
ccip-caformer-5_fp32 0.864363 0.90155 0.830121 0.183973 0.792051 0.862289
ccip-caformer-6-randaug-pruned_fp32 0.878403 0.893648 0.863669 0.195122 0.810176 0.897904
ccip-caformer_query-12 0.823928 0.871122 0.781585 0.141308 0.787237 0.809426
  • The calculation of F1 Score, Precision, and Recall considers "the characters in both images are the same" as a positive case. Threshold is determined by finding the maximum value on the F1 Score curve.
  • Cluster_2 represents the approximate optimal clustering solution obtained by tuning the eps value in DBSCAN clustering algorithm with min_samples set to 2, and evaluating the similarity between the obtained clusters and the true distribution using the random_adjust_score.
  • Cluster_Free represents the approximate optimal solution obtained by tuning the max_eps and min_samples values in the OPTICS clustering algorithm, and evaluating the similarity between the obtained clusters and the true distribution using the random_adjust_score.