--- license: other license_name: deepcode-ai license_link: LICENSE --- ## 3. Quick Start ### Installation On the basis of `Python >= 3.8` environment, install the necessary dependencies by running the following command: ```shell git clone https://github.com/deepcode-ai/DeepCode-VL cd DeepCode-VL pip install -e . ``` ### Simple Inference Example ```python import torch from transformers import AutoModelForCausalLM from deepcode_vl.models import VLChatProcessor, MultiModalityCausalLM from deepcode_vl.utils.io import load_pil_images # specify the path to the model model_path = "deepcode-ai/deepcode-base" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() conversation = [ { "role": "User", "content": "Describe each stage of this image.", "images": ["./images/training_pipelines.png"] }, { "role": "Assistant", "content": "" } ] # load images and prepare for inputs pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True ).to(vl_gpt.device) # run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) # run the model to get the response outputs = vl_gpt.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=False, use_cache=True ) answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) print(f"{prepare_inputs['sft_format'][0]}", answer) ``` ### CLI Chat ```bash python cli_chat.py --model_path "deepcode-ai/deepcode-base" # or local path python cli_chat.py --model_path "local model path" ``