import copy import logging import torch import torch.nn as nn import numpy as np from models.embedding_models.bert_embedding_model import BertEmbedModel from models.embedding_models.pretrained_embedding_model import PretrainedEmbedModel from modules.token_embedders.bert_encoder import BertLinear from collections import defaultdict from transformers import AutoTokenizer logger = logging.getLogger(__name__) class EntRelJointDecoder(nn.Module): Argument_START_NER = ''.lower() Argument_END_NER = ''.lower() Relation_START_NER = ''.lower() Relation_END_NER = ''.lower() def __init__(self, cfg, vocab, ent_rel_file, rel_file): """__init__ constructs `EntRelJointDecoder` components and sets `EntRelJointDecoder` parameters. This class adopts a joint decoding algorithm for entity relation joint decoing and facilitates the interaction between entity and relation. Args: cfg (dict): config parameters for constructing multiple models vocab (Vocabulary): vocabulary ent_rel_file (dict): entity and relation file (joint id, entity id, relation id, symmetric id, asymmetric id) """ super().__init__() self.auto_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") self.cls = self.auto_tokenizer.cls_token self.sep = self.auto_tokenizer.sep_token self.rel_file = rel_file self.add_marker_tokens() self.vocab = vocab self.max_span_length = cfg.max_span_length self.activation = nn.GELU() self.device = cfg.device self.separate_threshold = cfg.separate_threshold if cfg.embedding_model == 'bert': self.embedding_model = BertEmbedModel(cfg, vocab) elif cfg.embedding_model == 'pretrained': self.embedding_model = PretrainedEmbedModel(cfg, vocab) self.encoder_output_size = self.embedding_model.get_hidden_size() self.head_mlp = BertLinear(input_size=self.encoder_output_size, output_size=cfg.mlp_hidden_size, activation=self.activation, dropout=cfg.dropout) self.tail_mlp = BertLinear(input_size=self.encoder_output_size, output_size=cfg.mlp_hidden_size, activation=self.activation, dropout=cfg.dropout) self.U = nn.Parameter( torch.FloatTensor(self.vocab.get_vocab_size('ent_rel_id'), cfg.mlp_hidden_size + 1, cfg.mlp_hidden_size + 1)) self.U.data.zero_() if cfg.logit_dropout > 0: self.logit_dropout = nn.Dropout(p=cfg.logit_dropout) else: self.logit_dropout = lambda x: x self.none_idx = self.vocab.get_token_index('None', 'ent_rel_id') self.symmetric_label = torch.LongTensor(ent_rel_file["symmetric"]) self.asymmetric_label = torch.LongTensor(ent_rel_file["asymmetric"]) self.ent_label = torch.LongTensor(ent_rel_file["entity"]) self.rel_label = torch.LongTensor(ent_rel_file["relation"]) # self.rel_label = torch.LongTensor([r - 2 for r in ent_rel_file["relation"]]) if self.device > -1: self.symmetric_label = self.symmetric_label.cuda(device=self.device, non_blocking=True) self.asymmetric_label = self.asymmetric_label.cuda(device=self.device, non_blocking=True) self.ent_label = self.ent_label.cuda(device=self.device, non_blocking=True) self.rel_label = self.rel_label.cuda(device=self.device, non_blocking=True) self.element_loss = nn.CrossEntropyLoss() def add_marker_tokens(self): new_tokens = ['', ''] for label in self.rel_file["entity_text"]: new_tokens.append('' % label) new_tokens.append('' % label) self.auto_tokenizer.add_tokens(new_tokens) # print('# vocab after adding markers: %d'%len(tokenizer)) def forward(self, batch_inputs, rel_model, dataset_vocab): """forward Arguments: batch_inputs {dict} -- batch input data Returns: dict -- results: ent_loss, ent_pred """ results = {} batch_seq_tokens_lens = batch_inputs['tokens_lens'] batch_tokens = batch_inputs['tokens'] self.embedding_model(batch_inputs) batch_seq_tokens_encoder_repr = batch_inputs['seq_encoder_reprs'] batch_seq_tokens_head_repr = self.head_mlp(batch_seq_tokens_encoder_repr) batch_seq_tokens_head_repr = torch.cat( [batch_seq_tokens_head_repr, torch.ones_like(batch_seq_tokens_head_repr[..., :1])], dim=-1) batch_seq_tokens_tail_repr = self.tail_mlp(batch_seq_tokens_encoder_repr) batch_seq_tokens_tail_repr = torch.cat( [batch_seq_tokens_tail_repr, torch.ones_like(batch_seq_tokens_tail_repr[..., :1])], dim=-1) batch_joint_score = torch.einsum('bxi, oij, byj -> boxy', batch_seq_tokens_head_repr, self.U, batch_seq_tokens_tail_repr).permute(0, 2, 3, 1) batch_normalized_joint_score = torch.softmax( batch_joint_score, dim=-1) * batch_inputs['joint_label_matrix_mask'].unsqueeze(-1).float() if not self.training: results['entity_label_preds'] = torch.argmax(batch_normalized_joint_score, dim=-1) separate_position_preds, ent_preds, rel_preds = self.soft_joint_decoding( batch_normalized_joint_score, rel_model, batch_tokens, batch_seq_tokens_lens, dataset_vocab) results['all_separate_position_preds'] = separate_position_preds results['all_ent_preds'] = ent_preds results['all_rel_preds'] = rel_preds return results results['element_loss'] = self.element_loss( self.logit_dropout(batch_joint_score[batch_inputs['joint_label_matrix_mask']]), batch_inputs['joint_label_matrix'][batch_inputs['joint_label_matrix_mask']]) batch_symmetric_normalized_joint_score = batch_normalized_joint_score[..., self.symmetric_label] results['symmetric_loss'] = torch.abs(batch_symmetric_normalized_joint_score - batch_symmetric_normalized_joint_score.transpose(1, 2)).sum( dim=-1)[batch_inputs['joint_label_matrix_mask']].mean() batch_rel_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label], dim=-1).values batch_diag_ent_normalized_joint_score = torch.max( batch_normalized_joint_score[..., self.ent_label].diagonal(0, 1, 2), dim=1).values.unsqueeze(-1).expand_as(batch_rel_normalized_joint_score) results['implication_loss'] = ( torch.relu(batch_rel_normalized_joint_score - batch_diag_ent_normalized_joint_score).sum(dim=2) + torch.relu( batch_rel_normalized_joint_score.transpose(1, 2) - batch_diag_ent_normalized_joint_score).sum( dim=2))[batch_inputs['joint_label_matrix_mask'][..., 0]].mean() relation_entity_mask = batch_inputs['joint_label_matrix'].diagonal(0, 1, 2) relation_entity_mask = torch.eq(relation_entity_mask, self.ent_label[1]) batch_row_subject_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label[0]], dim=-1).values batch_column_subject_normalized_joint_score = torch.max( batch_normalized_joint_score.transpose(1, 2)[..., self.rel_label[0]], dim=-1).values batch_row_object_normalized_joint_score = torch.max(batch_normalized_joint_score[..., self.rel_label[1]], dim=-1).values batch_column_object_normalized_joint_score = torch.max( batch_normalized_joint_score.transpose(1, 2)[..., self.rel_label[1]], dim=-1).values results['triple_loss'] = ( (torch.relu(batch_row_object_normalized_joint_score - batch_row_subject_normalized_joint_score) + torch.relu( batch_column_object_normalized_joint_score - batch_column_subject_normalized_joint_score)) / 2 )[relation_entity_mask].mean() return results def soft_joint_decoding(self, batch_normalized_entity_score, rel_model, batch_tokens, batch_seq_tokens_lens, dataset_vocab): separate_position_preds = [] ent_preds = [] rel_preds = [] batch_normalized_entity_score = batch_normalized_entity_score.cpu().numpy() ent_label = self.ent_label.cpu().numpy() rel_label = self.rel_label.cpu().numpy() for idx, seq_len in enumerate(batch_seq_tokens_lens): # joint_rel_score = relation_matrix[idx][:seq_len, :seq_len, :] tokens = [dataset_vocab.get_token_from_index(token.item(), 'tokens') for token in batch_tokens[idx][:seq_len]] ent_pred = {} rel_pred = {} entity_score = batch_normalized_entity_score[idx][:seq_len, :seq_len, :] entity_score = (entity_score + entity_score.transpose((1, 0, 2))) / 2 entity_score_feature = entity_score.reshape(seq_len, -1) transposed_entity_score_feature = entity_score.transpose((1, 0, 2)).reshape(seq_len, -1) separate_pos = ( (np.linalg.norm(entity_score_feature[0:seq_len - 1] - entity_score_feature[1:seq_len], axis=1) + np.linalg.norm( transposed_entity_score_feature[0:seq_len - 1] - transposed_entity_score_feature[1:seq_len], axis=1)) * 0.5 > self.separate_threshold).nonzero()[0] separate_position_preds.append([pos.item() for pos in separate_pos]) if len(separate_pos) > 0: spans = [(0, separate_pos[0].item() + 1)] + [ (separate_pos[idx].item() + 1, separate_pos[idx + 1].item() + 1) for idx in range(len(separate_pos) - 1)] + [(separate_pos[-1].item() + 1, seq_len)] else: spans = [(0, seq_len)] merged_spans = [(span,) for span in spans] ents = [] relations = [] arguments = [] index2span = {} for span in merged_spans: target_indices = [] for sp in span: target_indices += [idx for idx in range(sp[0], sp[1])] score = np.mean(entity_score[target_indices, :, :][:, target_indices, :], axis=(0, 1)) if not (np.max(score[ent_label]) < score[self.none_idx]): pred = ent_label[np.argmax(score[ent_label])].item() pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id') if pred_label == "Relation": relations.append(target_indices) else: arguments.append(target_indices) ents.append(target_indices) index2span[tuple(target_indices)] = span ent_pred[span] = pred_label # relation decode begins for rel in relations: subj_found = False obj_found = False # if rel[-1] < seq_len - 6: sorted_arguments = sorted(arguments, key=lambda a: abs(a[0] - rel[0])) sorted_indices = [arguments.index(arg) for arg in sorted_arguments] argument_start_ids = [arg[0] for arg in sorted_arguments] argument_end_ids = [arg[-1] for arg in sorted_arguments] relation_indices = [] argument_indices = [] wordpiece_tokens = [self.cls] for i, token in enumerate(tokens): if i == rel[0]: relation_indices.append(len(wordpiece_tokens)) wordpiece_tokens.append(self.Relation_START_NER) if i in argument_start_ids: argument_indices.append(len(wordpiece_tokens)) wordpiece_tokens.append(self.Argument_START_NER) tokenized_token = list(self.auto_tokenizer.tokenize(token)) wordpiece_tokens.extend(tokenized_token) if i == rel[-1]: wordpiece_tokens.append(self.Relation_END_NER) if i in argument_end_ids: wordpiece_tokens.append(self.Argument_END_NER) wordpiece_tokens.append(self.sep) wordpiece_segment_ids = [1] * (len(wordpiece_tokens)) wordpiece_tokens = [rel_model.vocab.get_token_index(token, 'wordpiece') for token in wordpiece_tokens] rel_input = { "wordpiece_tokens": torch.LongTensor([wordpiece_tokens]), "relation_ids": torch.LongTensor([relation_indices * len(argument_indices)]), "argument_ids": torch.LongTensor([argument_indices]), "label_ids_mask": torch.LongTensor([[1] * len(argument_indices)]), "wordpiece_segment_ids": torch.LongTensor([wordpiece_segment_ids]) } output = rel_model(rel_input) output = output['label_preds'][0].cpu().numpy() sorted_output_labels = [output[i] for i in sorted_indices] assert len(argument_start_ids) == len(output) prev_subj = 0 prev_obj = 0 for idx, label_id in enumerate(sorted_output_labels): if label_id == 0 and subj_found and obj_found: break pred_label = "None" pred_t_label = "None" score = np.mean(entity_score[rel, :, :][:, sorted_arguments[idx], :], axis=(0, 1)) score_t = np.mean(entity_score[sorted_arguments[idx], :, :][:, rel, :], axis=(0, 1)) if not (np.max(score[self.rel_label]) < score[self.none_idx]) or \ not (np.max(score_t[self.rel_label]) < score_t[self.none_idx]): pred = rel_label[np.argmax(score[self.rel_label])].item() pred_label = self.vocab.get_token_from_index(pred, 'ent_rel_id') pred = rel_label[np.argmax(score_t[self.rel_label])].item() pred_t_label = self.vocab.get_token_from_index(pred, 'ent_rel_id') # to handle object less extractions if label_id == 1 and sorted_arguments[idx][0] > rel[-1]: obj_found = True if (pred_label == "Object" or pred_t_label == "Object") and \ (not obj_found or (prev_obj != 0 and prev_obj + 1 <= sorted_arguments[idx][0] <= prev_obj + 3)): rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Object" prev_obj = sorted_arguments[idx][-1] continue # just added (maybe need to be deleted) if (label_id == 2 and sorted_arguments[idx][0] < rel[0]): if (pred_label == "Subject" or pred_t_label == "Subject") and \ (not subj_found or (prev_subj != 0 and prev_subj - 1 == sorted_arguments[idx][-1])): rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Subject" subj_found = True prev_subj = sorted_arguments[idx][0] continue if label_id == 1 and (not subj_found or ( prev_subj != 0 and sorted_arguments[idx][-1] == prev_subj - 1)): rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Subject" subj_found = True prev_subj = sorted_arguments[idx][0] elif label_id == 2 and (not obj_found or (prev_obj != 0 and prev_obj + 1 == sorted_arguments[idx][0])): rel_pred[(index2span[tuple(rel)], index2span[tuple(sorted_arguments[idx])])] = "Object" obj_found = True prev_obj = sorted_arguments[idx][-1] ent_preds.append(ent_pred) rel_preds.append(rel_pred) return separate_position_preds, ent_preds, rel_preds