Back to all models
Model card Files and versions Use in transformers
translation mask_token:
Query this model
πŸ”₯ This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚑️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

deep-learning-analytics/triviaqa-t5-base deep-learning-analytics/triviaqa-t5-base
last 30 days



Contributed by

deep-learning-analytics Priya Dwivedi
2 models

Model name

Closed Book Trivia-QA T5 base

Model description

This is a T5-base model trained on No Context Trivia QA data set. The input to the model is a Trivia type question. The model is tuned to search for the answer in its memory to return it. The pretrained model used here was trained on Common Crawl (C4) data set. The model was trained for 135 epochs using a batch size of 32 and learning rate of 1e-3. Max_input_lngth is set as 25 and max_output_length is 10. Model attained an EM score of 17 and a Subset Match score of 24.5 We have written a blog post that covers the training procedure. Please find it here.

Test the model on Trivia Questions from the websites below:


from transformers import AutoTokenizer, AutoModelWithLMHead

tokenizer = AutoTokenizer.from_pretrained("deep-learning-analytics/triviaqa-t5-base")
model = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/triviaqa-t5-base")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model =

text = "Who directed the movie Jaws?"

preprocess_text = text.strip().replace("\n","")
tokenized_text = tokenizer.encode(preprocess_text, return_tensors="pt").to(device)

outs = model.model.generate(

dec = [tokenizer.decode(ids) for ids in outs]
print("Predicted Answer: ", dec)