--- license: apache-2.0 datasets: - anon8231489123/ShareGPT_Vicuna_unfiltered - declare-lab/HarmfulQA --- [**Paper**](https://openreview.net/pdf?id=jkcHYEfPv3) | [**Github**](https://github.com/declare-lab/red-instruct) | [**Dataset**](https://huggingface.co/datasets/declare-lab/HarmfulQA)| [**Model**](https://huggingface.co/declare-lab/starling-7B) As a part of our research efforts to make LLMs safer, we created **Starling**. It is obtained by fine-tuning Vicuna-7B on [**HarmfulQA**](https://huggingface.co/datasets/declare-lab/HarmfulQA), a ChatGPT-distilled dataset that we collected using the Chain of Utterances (CoU) prompt. More details are in our paper [**Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment**](https://openreview.net/pdf?id=jkcHYEfPv3) Experimental results on several safety benchmark datasets indicate that **Starling** is a safer model compared to the baseline model, Vicuna.