--- license: mit --- ## How to use Requirements: ```bash git clone https://github.com/ddevaul/transformers transformers_outer ``` ```bash cd transformers_outer ``` ```bash pip install -r requirements.txt ``` ```bash cd .. ``` Now open your file and add this: ```python import sys import torch sys.path.append('./transformers_outer/src') from torch.utils.checkpoint import checkpoint from transformers2 import BertConfig, BertTokenizer from transformers2.models.bert import BertForMaskedLM preload_path = 'cabrooks/character-level-logion' char_tokenizer = BertTokenizer.from_pretrained(preload_path) wordpiece_tokenizer = BertTokenizer.from_pretrained("cabrooks/LOGION-50k_wordpiece") config = BertConfig() config.word_piece_vocab_size = 50000 config.vocab_size = char_tokenizer.vocab_size config.char_tokenizer = char_tokenizer config.wordpiece_tokenizer = wordpiece_tokenizer config.max_position_embeddings = 1024 config.device2 = device model = BertForMaskedLM(config).to(device) ``` Download the weights from "my_custom_model.pth". Load these weights into the model: ```python model.load_state_dict(torch.load('my_custom_model.pth', map_location=torch.device('cpu'))) ``` You are now ready to use the model. ## Cite If you use this model in your research, please cite the paper: ``` @misc{logion-base, title={Logion: Machine Learning for Greek Philology}, author={Cowen-Breen, C. and Brooks, C. and Haubold, J. and Graziosi, B.}, year={2023}, eprint={2305.01099}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```