# algebra_linear_1d --- language: en datasets: - algebra_linear_1d --- This is a [t5-small](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned version on the [math_dataset/algebra_linear_1d](https://www.tensorflow.org/datasets/catalog/math_dataset#mathdatasetalgebra_linear_1d_default_config) for solving **algebra 1d equations** mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d") model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d") ``` You can then use this model to solve algebra 1d equations into numbers. ```python query = "Solve 0 = 1026*x - 2474 + 46592 for x" input_text = f"{query} " features = tokenizer([input_text], return_tensors='pt') model.to('cuda') output = model.generate(input_ids=features['input_ids'].cuda(), attention_mask=features['attention_mask'].cuda()) tokenizer.decode(output[0]) # -41 ``` Another examples: - Solve 1112*r + 1418*r - 5220 = 587*r - 28536 for r. Answer: -12 Pred: -12 - Solve -547 = -62*t + 437 - 798 for t. Answer: 3 Pred: -1 - Solve -119*k + 6*k - 117 - 352 = 322 for k. Answer: -7 Pred: -7 - Solve 3*j - 3*j + 0*j - 4802 = 98*j for j. Answer: -49 Pred: -47 - Solve 3047*n - 6130*n - 1700 = -3049*n for n. Answer: -50 Pred: -25 - Solve 121*i + 1690 = 76*i - 128*i + 133 for i. Answer: -9 Pred: -7 > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)