--- base_model: d0rj/rut5-base-summ tags: - generated_from_trainer metrics: - rouge model-index: - name: summary_resume_keywords results: [] --- # summary_resume_keywords This model is a fine-tuned version of [d0rj/rut5-base-summ](https://huggingface.co/d0rj/rut5-base-summ) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9737 - Rouge1: 0.2285 - Rouge2: 0.1524 - Rougel: 0.2285 - Rougelsum: 0.2285 - Gen Len: 51.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 90 | 2.7766 | 0.2485 | 0.1111 | 0.2485 | 0.2485 | 52.0 | | No log | 2.0 | 180 | 2.7734 | 0.2556 | 0.1404 | 0.2389 | 0.2389 | 53.6667 | | No log | 3.0 | 270 | 2.7763 | 0.2882 | 0.1368 | 0.2557 | 0.2557 | 51.6667 | | No log | 4.0 | 360 | 2.7921 | 0.2722 | 0.1404 | 0.2389 | 0.2389 | 58.3333 | | No log | 5.0 | 450 | 2.8146 | 0.2778 | 0.1622 | 0.2607 | 0.2607 | 57.3333 | | 2.1351 | 6.0 | 540 | 2.8387 | 0.2778 | 0.1622 | 0.2607 | 0.2607 | 57.3333 | | 2.1351 | 7.0 | 630 | 2.8569 | 0.2778 | 0.1622 | 0.2607 | 0.2607 | 57.3333 | | 2.1351 | 8.0 | 720 | 2.8736 | 0.2538 | 0.1524 | 0.2538 | 0.2538 | 55.3333 | | 2.1351 | 9.0 | 810 | 2.8883 | 0.2538 | 0.1524 | 0.2538 | 0.2538 | 55.3333 | | 2.1351 | 10.0 | 900 | 2.9025 | 0.2315 | 0.1524 | 0.2315 | 0.2315 | 51.0 | | 2.1351 | 11.0 | 990 | 2.9161 | 0.2315 | 0.1524 | 0.2315 | 0.2315 | 51.0 | | 1.7131 | 12.0 | 1080 | 2.9269 | 0.2315 | 0.1524 | 0.2315 | 0.2315 | 51.0 | | 1.7131 | 13.0 | 1170 | 2.9354 | 0.226 | 0.1524 | 0.226 | 0.226 | 54.0 | | 1.7131 | 14.0 | 1260 | 2.9427 | 0.226 | 0.1524 | 0.226 | 0.226 | 54.0 | | 1.7131 | 15.0 | 1350 | 2.9471 | 0.2272 | 0.1524 | 0.2272 | 0.2272 | 53.6667 | | 1.7131 | 16.0 | 1440 | 2.9509 | 0.226 | 0.1524 | 0.226 | 0.226 | 54.0 | | 1.5914 | 17.0 | 1530 | 2.9558 | 0.2272 | 0.1524 | 0.2272 | 0.2272 | 53.6667 | | 1.5914 | 18.0 | 1620 | 2.9589 | 0.226 | 0.1524 | 0.226 | 0.226 | 54.0 | | 1.5914 | 19.0 | 1710 | 2.9636 | 0.2285 | 0.1524 | 0.2285 | 0.2285 | 51.0 | | 1.5914 | 20.0 | 1800 | 2.9660 | 0.2285 | 0.1524 | 0.2285 | 0.2285 | 51.0 | | 1.5914 | 21.0 | 1890 | 2.9687 | 0.2285 | 0.1524 | 0.2285 | 0.2285 | 50.3333 | | 1.5914 | 22.0 | 1980 | 2.9709 | 0.2285 | 0.1524 | 0.2285 | 0.2285 | 50.3333 | | 1.5508 | 23.0 | 2070 | 2.9736 | 0.2285 | 0.1524 | 0.2285 | 0.2285 | 50.3333 | | 1.5508 | 24.0 | 2160 | 2.9742 | 0.2285 | 0.1524 | 0.2285 | 0.2285 | 50.3333 | | 1.5508 | 25.0 | 2250 | 2.9737 | 0.2285 | 0.1524 | 0.2285 | 0.2285 | 51.3333 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2