diff --git "a/trainer_state.json" "b/trainer_state.json" new file mode 100644--- /dev/null +++ "b/trainer_state.json" @@ -0,0 +1,5062 @@ +{ + "best_metric": 0.4553995728492737, + "best_model_checkpoint": "./beans_outputs/checkpoint-69", + "epoch": 200.0, + "eval_steps": 500, + "global_step": 4600, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.43478260869565216, + "grad_norm": 9.284521102905273, + "learning_rate": 1.9956521739130435e-05, + "loss": 0.6169, + "step": 10 + }, + { + "epoch": 0.8695652173913043, + "grad_norm": 6.047142028808594, + "learning_rate": 1.9913043478260872e-05, + "loss": 0.5242, + "step": 20 + }, + { + "epoch": 1.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 0.4960778057575226, + "eval_runtime": 5.6891, + "eval_samples_per_second": 44.647, + "eval_steps_per_second": 0.703, + "step": 23 + }, + { + "epoch": 1.3043478260869565, + "grad_norm": 27.046829223632812, + "learning_rate": 1.9869565217391305e-05, + "loss": 0.5153, + "step": 30 + }, + { + "epoch": 1.7391304347826086, + "grad_norm": 9.23794937133789, + "learning_rate": 1.9826086956521742e-05, + "loss": 0.459, + "step": 40 + }, + { + "epoch": 2.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.5001373887062073, + "eval_runtime": 5.3498, + "eval_samples_per_second": 47.478, + "eval_steps_per_second": 0.748, + "step": 46 + }, + { + "epoch": 2.1739130434782608, + "grad_norm": 13.100432395935059, + "learning_rate": 1.9782608695652176e-05, + "loss": 0.4273, + "step": 50 + }, + { + "epoch": 2.608695652173913, + "grad_norm": 8.970976829528809, + "learning_rate": 1.973913043478261e-05, + "loss": 0.4429, + "step": 60 + }, + { + "epoch": 3.0, + "eval_accuracy": 0.7874015748031497, + "eval_loss": 0.4553995728492737, + "eval_runtime": 5.921, + "eval_samples_per_second": 42.899, + "eval_steps_per_second": 0.676, + "step": 69 + }, + { + "epoch": 3.0434782608695654, + "grad_norm": 18.094818115234375, + "learning_rate": 1.9695652173913046e-05, + "loss": 0.4676, + "step": 70 + }, + { + "epoch": 3.4782608695652173, + "grad_norm": 23.408973693847656, + "learning_rate": 1.965217391304348e-05, + "loss": 0.4298, + "step": 80 + }, + { + "epoch": 3.9130434782608696, + "grad_norm": 8.188302993774414, + "learning_rate": 1.9608695652173916e-05, + "loss": 0.4308, + "step": 90 + }, + { + "epoch": 4.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.49241384863853455, + "eval_runtime": 5.0789, + "eval_samples_per_second": 50.011, + "eval_steps_per_second": 0.788, + "step": 92 + }, + { + "epoch": 4.3478260869565215, + "grad_norm": 24.4296932220459, + "learning_rate": 1.956521739130435e-05, + "loss": 0.4158, + "step": 100 + }, + { + "epoch": 4.782608695652174, + "grad_norm": 6.616312503814697, + "learning_rate": 1.9521739130434786e-05, + "loss": 0.4319, + "step": 110 + }, + { + "epoch": 5.0, + "eval_accuracy": 0.7874015748031497, + "eval_loss": 0.46732431650161743, + "eval_runtime": 5.2746, + "eval_samples_per_second": 48.155, + "eval_steps_per_second": 0.758, + "step": 115 + }, + { + "epoch": 5.217391304347826, + "grad_norm": 11.640789031982422, + "learning_rate": 1.947826086956522e-05, + "loss": 0.4422, + "step": 120 + }, + { + "epoch": 5.6521739130434785, + "grad_norm": 14.8034029006958, + "learning_rate": 1.9434782608695653e-05, + "loss": 0.4047, + "step": 130 + }, + { + "epoch": 6.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.4929516315460205, + "eval_runtime": 5.4996, + "eval_samples_per_second": 46.185, + "eval_steps_per_second": 0.727, + "step": 138 + }, + { + "epoch": 6.086956521739131, + "grad_norm": 17.933513641357422, + "learning_rate": 1.9391304347826087e-05, + "loss": 0.419, + "step": 140 + }, + { + "epoch": 6.521739130434782, + "grad_norm": 11.223569869995117, + "learning_rate": 1.9347826086956523e-05, + "loss": 0.4235, + "step": 150 + }, + { + "epoch": 6.956521739130435, + "grad_norm": 9.359394073486328, + "learning_rate": 1.9304347826086957e-05, + "loss": 0.425, + "step": 160 + }, + { + "epoch": 7.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.4738819897174835, + "eval_runtime": 5.686, + "eval_samples_per_second": 44.671, + "eval_steps_per_second": 0.703, + "step": 161 + }, + { + "epoch": 7.391304347826087, + "grad_norm": 13.405791282653809, + "learning_rate": 1.9260869565217394e-05, + "loss": 0.4076, + "step": 170 + }, + { + "epoch": 7.826086956521739, + "grad_norm": 7.356156826019287, + "learning_rate": 1.9217391304347827e-05, + "loss": 0.4102, + "step": 180 + }, + { + "epoch": 8.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 0.5118146538734436, + "eval_runtime": 5.9498, + "eval_samples_per_second": 42.691, + "eval_steps_per_second": 0.672, + "step": 184 + }, + { + "epoch": 8.26086956521739, + "grad_norm": 9.282608032226562, + "learning_rate": 1.9173913043478264e-05, + "loss": 0.3981, + "step": 190 + }, + { + "epoch": 8.695652173913043, + "grad_norm": 8.834388732910156, + "learning_rate": 1.9130434782608697e-05, + "loss": 0.3959, + "step": 200 + }, + { + "epoch": 9.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 0.5490437746047974, + "eval_runtime": 6.1005, + "eval_samples_per_second": 41.636, + "eval_steps_per_second": 0.656, + "step": 207 + }, + { + "epoch": 9.130434782608695, + "grad_norm": 6.02927303314209, + "learning_rate": 1.9086956521739134e-05, + "loss": 0.4189, + "step": 210 + }, + { + "epoch": 9.565217391304348, + "grad_norm": 11.13778305053711, + "learning_rate": 1.9043478260869568e-05, + "loss": 0.3864, + "step": 220 + }, + { + "epoch": 10.0, + "grad_norm": 18.004470825195312, + "learning_rate": 1.9e-05, + "loss": 0.365, + "step": 230 + }, + { + "epoch": 10.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.5260568261146545, + "eval_runtime": 6.2538, + "eval_samples_per_second": 40.615, + "eval_steps_per_second": 0.64, + "step": 230 + }, + { + "epoch": 10.434782608695652, + "grad_norm": 12.497597694396973, + "learning_rate": 1.8956521739130434e-05, + "loss": 0.3614, + "step": 240 + }, + { + "epoch": 10.869565217391305, + "grad_norm": 17.154403686523438, + "learning_rate": 1.891304347826087e-05, + "loss": 0.4214, + "step": 250 + }, + { + "epoch": 11.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.5089420676231384, + "eval_runtime": 5.9748, + "eval_samples_per_second": 42.512, + "eval_steps_per_second": 0.669, + "step": 253 + }, + { + "epoch": 11.304347826086957, + "grad_norm": 11.148750305175781, + "learning_rate": 1.8869565217391305e-05, + "loss": 0.3476, + "step": 260 + }, + { + "epoch": 11.73913043478261, + "grad_norm": 18.083158493041992, + "learning_rate": 1.882608695652174e-05, + "loss": 0.3798, + "step": 270 + }, + { + "epoch": 12.0, + "eval_accuracy": 0.7992125984251969, + "eval_loss": 0.47105538845062256, + "eval_runtime": 6.2283, + "eval_samples_per_second": 40.782, + "eval_steps_per_second": 0.642, + "step": 276 + }, + { + "epoch": 12.173913043478262, + "grad_norm": 19.7681941986084, + "learning_rate": 1.8782608695652175e-05, + "loss": 0.3819, + "step": 280 + }, + { + "epoch": 12.608695652173914, + "grad_norm": 16.852922439575195, + "learning_rate": 1.8739130434782612e-05, + "loss": 0.3906, + "step": 290 + }, + { + "epoch": 13.0, + "eval_accuracy": 0.7913385826771654, + "eval_loss": 0.5035075545310974, + "eval_runtime": 6.1171, + "eval_samples_per_second": 41.523, + "eval_steps_per_second": 0.654, + "step": 299 + }, + { + "epoch": 13.043478260869565, + "grad_norm": 11.871081352233887, + "learning_rate": 1.8695652173913045e-05, + "loss": 0.3421, + "step": 300 + }, + { + "epoch": 13.478260869565217, + "grad_norm": 12.804304122924805, + "learning_rate": 1.865217391304348e-05, + "loss": 0.3452, + "step": 310 + }, + { + "epoch": 13.91304347826087, + "grad_norm": 13.583141326904297, + "learning_rate": 1.8608695652173912e-05, + "loss": 0.3706, + "step": 320 + }, + { + "epoch": 14.0, + "eval_accuracy": 0.7952755905511811, + "eval_loss": 0.49332255125045776, + "eval_runtime": 6.0462, + "eval_samples_per_second": 42.01, + "eval_steps_per_second": 0.662, + "step": 322 + }, + { + "epoch": 14.347826086956522, + "grad_norm": 10.307147979736328, + "learning_rate": 1.856521739130435e-05, + "loss": 0.3242, + "step": 330 + }, + { + "epoch": 14.782608695652174, + "grad_norm": 19.720266342163086, + "learning_rate": 1.8521739130434782e-05, + "loss": 0.3766, + "step": 340 + }, + { + "epoch": 15.0, + "eval_accuracy": 0.7992125984251969, + "eval_loss": 0.4972522258758545, + "eval_runtime": 5.4928, + "eval_samples_per_second": 46.242, + "eval_steps_per_second": 0.728, + "step": 345 + }, + { + "epoch": 15.217391304347826, + "grad_norm": 9.444562911987305, + "learning_rate": 1.847826086956522e-05, + "loss": 0.3569, + "step": 350 + }, + { + "epoch": 15.652173913043478, + "grad_norm": 14.776025772094727, + "learning_rate": 1.8434782608695653e-05, + "loss": 0.3213, + "step": 360 + }, + { + "epoch": 16.0, + "eval_accuracy": 0.7874015748031497, + "eval_loss": 0.5220504403114319, + "eval_runtime": 5.825, + "eval_samples_per_second": 43.605, + "eval_steps_per_second": 0.687, + "step": 368 + }, + { + "epoch": 16.08695652173913, + "grad_norm": 35.97469711303711, + "learning_rate": 1.839130434782609e-05, + "loss": 0.3719, + "step": 370 + }, + { + "epoch": 16.52173913043478, + "grad_norm": 15.621981620788574, + "learning_rate": 1.8347826086956523e-05, + "loss": 0.3303, + "step": 380 + }, + { + "epoch": 16.956521739130434, + "grad_norm": 12.130711555480957, + "learning_rate": 1.830434782608696e-05, + "loss": 0.329, + "step": 390 + }, + { + "epoch": 17.0, + "eval_accuracy": 0.7834645669291339, + "eval_loss": 0.5400053262710571, + "eval_runtime": 6.058, + "eval_samples_per_second": 41.928, + "eval_steps_per_second": 0.66, + "step": 391 + }, + { + "epoch": 17.391304347826086, + "grad_norm": 28.593765258789062, + "learning_rate": 1.8260869565217393e-05, + "loss": 0.3275, + "step": 400 + }, + { + "epoch": 17.82608695652174, + "grad_norm": 10.756831169128418, + "learning_rate": 1.8217391304347827e-05, + "loss": 0.3427, + "step": 410 + }, + { + "epoch": 18.0, + "eval_accuracy": 0.7913385826771654, + "eval_loss": 0.5252194404602051, + "eval_runtime": 5.781, + "eval_samples_per_second": 43.937, + "eval_steps_per_second": 0.692, + "step": 414 + }, + { + "epoch": 18.26086956521739, + "grad_norm": 9.596463203430176, + "learning_rate": 1.8173913043478263e-05, + "loss": 0.3363, + "step": 420 + }, + { + "epoch": 18.695652173913043, + "grad_norm": 12.830471992492676, + "learning_rate": 1.8130434782608697e-05, + "loss": 0.3472, + "step": 430 + }, + { + "epoch": 19.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 0.6207993626594543, + "eval_runtime": 5.8687, + "eval_samples_per_second": 43.281, + "eval_steps_per_second": 0.682, + "step": 437 + }, + { + "epoch": 19.130434782608695, + "grad_norm": 11.963924407958984, + "learning_rate": 1.808695652173913e-05, + "loss": 0.3509, + "step": 440 + }, + { + "epoch": 19.565217391304348, + "grad_norm": 9.393329620361328, + "learning_rate": 1.8043478260869567e-05, + "loss": 0.3149, + "step": 450 + }, + { + "epoch": 20.0, + "grad_norm": 13.855999946594238, + "learning_rate": 1.8e-05, + "loss": 0.3424, + "step": 460 + }, + { + "epoch": 20.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.5319867730140686, + "eval_runtime": 5.8322, + "eval_samples_per_second": 43.551, + "eval_steps_per_second": 0.686, + "step": 460 + }, + { + "epoch": 20.434782608695652, + "grad_norm": 12.548827171325684, + "learning_rate": 1.7956521739130437e-05, + "loss": 0.322, + "step": 470 + }, + { + "epoch": 20.869565217391305, + "grad_norm": 12.916594505310059, + "learning_rate": 1.791304347826087e-05, + "loss": 0.3016, + "step": 480 + }, + { + "epoch": 21.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.5488443970680237, + "eval_runtime": 6.0683, + "eval_samples_per_second": 41.857, + "eval_steps_per_second": 0.659, + "step": 483 + }, + { + "epoch": 21.304347826086957, + "grad_norm": 10.366270065307617, + "learning_rate": 1.7869565217391304e-05, + "loss": 0.2733, + "step": 490 + }, + { + "epoch": 21.73913043478261, + "grad_norm": 11.919926643371582, + "learning_rate": 1.782608695652174e-05, + "loss": 0.3033, + "step": 500 + }, + { + "epoch": 22.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 0.5889012813568115, + "eval_runtime": 6.0978, + "eval_samples_per_second": 41.654, + "eval_steps_per_second": 0.656, + "step": 506 + }, + { + "epoch": 22.17391304347826, + "grad_norm": 13.522591590881348, + "learning_rate": 1.7782608695652174e-05, + "loss": 0.26, + "step": 510 + }, + { + "epoch": 22.608695652173914, + "grad_norm": 15.789691925048828, + "learning_rate": 1.773913043478261e-05, + "loss": 0.3083, + "step": 520 + }, + { + "epoch": 23.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.6107717156410217, + "eval_runtime": 5.8735, + "eval_samples_per_second": 43.245, + "eval_steps_per_second": 0.681, + "step": 529 + }, + { + "epoch": 23.043478260869566, + "grad_norm": 13.747518539428711, + "learning_rate": 1.7695652173913045e-05, + "loss": 0.2794, + "step": 530 + }, + { + "epoch": 23.47826086956522, + "grad_norm": 14.642496109008789, + "learning_rate": 1.765217391304348e-05, + "loss": 0.2862, + "step": 540 + }, + { + "epoch": 23.91304347826087, + "grad_norm": 16.773733139038086, + "learning_rate": 1.7608695652173915e-05, + "loss": 0.2772, + "step": 550 + }, + { + "epoch": 24.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 0.5844786763191223, + "eval_runtime": 6.1158, + "eval_samples_per_second": 41.532, + "eval_steps_per_second": 0.654, + "step": 552 + }, + { + "epoch": 24.347826086956523, + "grad_norm": 11.864821434020996, + "learning_rate": 1.756521739130435e-05, + "loss": 0.2693, + "step": 560 + }, + { + "epoch": 24.782608695652176, + "grad_norm": 19.129663467407227, + "learning_rate": 1.7521739130434785e-05, + "loss": 0.287, + "step": 570 + }, + { + "epoch": 25.0, + "eval_accuracy": 0.8070866141732284, + "eval_loss": 0.5241626501083374, + "eval_runtime": 6.0464, + "eval_samples_per_second": 42.008, + "eval_steps_per_second": 0.662, + "step": 575 + }, + { + "epoch": 25.217391304347824, + "grad_norm": 9.217809677124023, + "learning_rate": 1.747826086956522e-05, + "loss": 0.309, + "step": 580 + }, + { + "epoch": 25.652173913043477, + "grad_norm": 20.24026870727539, + "learning_rate": 1.7434782608695652e-05, + "loss": 0.2651, + "step": 590 + }, + { + "epoch": 26.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 0.6275522112846375, + "eval_runtime": 5.2184, + "eval_samples_per_second": 48.674, + "eval_steps_per_second": 0.767, + "step": 598 + }, + { + "epoch": 26.08695652173913, + "grad_norm": 14.04963207244873, + "learning_rate": 1.739130434782609e-05, + "loss": 0.2763, + "step": 600 + }, + { + "epoch": 26.52173913043478, + "grad_norm": 18.499040603637695, + "learning_rate": 1.7347826086956522e-05, + "loss": 0.2944, + "step": 610 + }, + { + "epoch": 26.956521739130434, + "grad_norm": 14.989178657531738, + "learning_rate": 1.730434782608696e-05, + "loss": 0.2696, + "step": 620 + }, + { + "epoch": 27.0, + "eval_accuracy": 0.7834645669291339, + "eval_loss": 0.5648530125617981, + "eval_runtime": 5.345, + "eval_samples_per_second": 47.521, + "eval_steps_per_second": 0.748, + "step": 621 + }, + { + "epoch": 27.391304347826086, + "grad_norm": 24.154279708862305, + "learning_rate": 1.7260869565217393e-05, + "loss": 0.2638, + "step": 630 + }, + { + "epoch": 27.82608695652174, + "grad_norm": 21.489530563354492, + "learning_rate": 1.721739130434783e-05, + "loss": 0.2701, + "step": 640 + }, + { + "epoch": 28.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.6103212237358093, + "eval_runtime": 5.2378, + "eval_samples_per_second": 48.494, + "eval_steps_per_second": 0.764, + "step": 644 + }, + { + "epoch": 28.26086956521739, + "grad_norm": 7.044363975524902, + "learning_rate": 1.7173913043478263e-05, + "loss": 0.2929, + "step": 650 + }, + { + "epoch": 28.695652173913043, + "grad_norm": 8.331864356994629, + "learning_rate": 1.71304347826087e-05, + "loss": 0.2451, + "step": 660 + }, + { + "epoch": 29.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.6206949949264526, + "eval_runtime": 5.2583, + "eval_samples_per_second": 48.305, + "eval_steps_per_second": 0.761, + "step": 667 + }, + { + "epoch": 29.130434782608695, + "grad_norm": 14.339310646057129, + "learning_rate": 1.708695652173913e-05, + "loss": 0.238, + "step": 670 + }, + { + "epoch": 29.565217391304348, + "grad_norm": 17.397079467773438, + "learning_rate": 1.7043478260869566e-05, + "loss": 0.2621, + "step": 680 + }, + { + "epoch": 30.0, + "grad_norm": 49.991676330566406, + "learning_rate": 1.7e-05, + "loss": 0.2705, + "step": 690 + }, + { + "epoch": 30.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.5990407466888428, + "eval_runtime": 5.3203, + "eval_samples_per_second": 47.741, + "eval_steps_per_second": 0.752, + "step": 690 + }, + { + "epoch": 30.434782608695652, + "grad_norm": 10.006631851196289, + "learning_rate": 1.6956521739130437e-05, + "loss": 0.2313, + "step": 700 + }, + { + "epoch": 30.869565217391305, + "grad_norm": 19.18036651611328, + "learning_rate": 1.691304347826087e-05, + "loss": 0.2553, + "step": 710 + }, + { + "epoch": 31.0, + "eval_accuracy": 0.7834645669291339, + "eval_loss": 0.5962309241294861, + "eval_runtime": 5.2875, + "eval_samples_per_second": 48.038, + "eval_steps_per_second": 0.757, + "step": 713 + }, + { + "epoch": 31.304347826086957, + "grad_norm": 11.844828605651855, + "learning_rate": 1.6869565217391307e-05, + "loss": 0.2392, + "step": 720 + }, + { + "epoch": 31.73913043478261, + "grad_norm": 28.340103149414062, + "learning_rate": 1.682608695652174e-05, + "loss": 0.2559, + "step": 730 + }, + { + "epoch": 32.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.6681433916091919, + "eval_runtime": 5.5265, + "eval_samples_per_second": 45.961, + "eval_steps_per_second": 0.724, + "step": 736 + }, + { + "epoch": 32.17391304347826, + "grad_norm": 19.246511459350586, + "learning_rate": 1.6782608695652177e-05, + "loss": 0.2441, + "step": 740 + }, + { + "epoch": 32.608695652173914, + "grad_norm": 14.579903602600098, + "learning_rate": 1.673913043478261e-05, + "loss": 0.2405, + "step": 750 + }, + { + "epoch": 33.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.5917338132858276, + "eval_runtime": 5.8004, + "eval_samples_per_second": 43.79, + "eval_steps_per_second": 0.69, + "step": 759 + }, + { + "epoch": 33.04347826086956, + "grad_norm": 18.550579071044922, + "learning_rate": 1.6695652173913044e-05, + "loss": 0.2983, + "step": 760 + }, + { + "epoch": 33.47826086956522, + "grad_norm": 12.869200706481934, + "learning_rate": 1.6652173913043477e-05, + "loss": 0.2653, + "step": 770 + }, + { + "epoch": 33.91304347826087, + "grad_norm": 21.49362564086914, + "learning_rate": 1.6608695652173914e-05, + "loss": 0.2707, + "step": 780 + }, + { + "epoch": 34.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.5905888080596924, + "eval_runtime": 6.1194, + "eval_samples_per_second": 41.508, + "eval_steps_per_second": 0.654, + "step": 782 + }, + { + "epoch": 34.34782608695652, + "grad_norm": 20.466447830200195, + "learning_rate": 1.6565217391304348e-05, + "loss": 0.2314, + "step": 790 + }, + { + "epoch": 34.78260869565217, + "grad_norm": 14.096879005432129, + "learning_rate": 1.6521739130434785e-05, + "loss": 0.3004, + "step": 800 + }, + { + "epoch": 35.0, + "eval_accuracy": 0.7874015748031497, + "eval_loss": 0.5905265212059021, + "eval_runtime": 5.7562, + "eval_samples_per_second": 44.126, + "eval_steps_per_second": 0.695, + "step": 805 + }, + { + "epoch": 35.21739130434783, + "grad_norm": 12.822495460510254, + "learning_rate": 1.6478260869565218e-05, + "loss": 0.2325, + "step": 810 + }, + { + "epoch": 35.65217391304348, + "grad_norm": 15.958830833435059, + "learning_rate": 1.6434782608695655e-05, + "loss": 0.2404, + "step": 820 + }, + { + "epoch": 36.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.5914427042007446, + "eval_runtime": 5.657, + "eval_samples_per_second": 44.9, + "eval_steps_per_second": 0.707, + "step": 828 + }, + { + "epoch": 36.08695652173913, + "grad_norm": 14.542938232421875, + "learning_rate": 1.6391304347826088e-05, + "loss": 0.235, + "step": 830 + }, + { + "epoch": 36.52173913043478, + "grad_norm": 36.17627716064453, + "learning_rate": 1.6347826086956525e-05, + "loss": 0.258, + "step": 840 + }, + { + "epoch": 36.95652173913044, + "grad_norm": 16.92486572265625, + "learning_rate": 1.630434782608696e-05, + "loss": 0.242, + "step": 850 + }, + { + "epoch": 37.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.7637115716934204, + "eval_runtime": 5.8801, + "eval_samples_per_second": 43.196, + "eval_steps_per_second": 0.68, + "step": 851 + }, + { + "epoch": 37.391304347826086, + "grad_norm": 16.343120574951172, + "learning_rate": 1.6260869565217392e-05, + "loss": 0.2075, + "step": 860 + }, + { + "epoch": 37.82608695652174, + "grad_norm": 26.078245162963867, + "learning_rate": 1.621739130434783e-05, + "loss": 0.2221, + "step": 870 + }, + { + "epoch": 38.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 0.7117211222648621, + "eval_runtime": 5.1769, + "eval_samples_per_second": 49.064, + "eval_steps_per_second": 0.773, + "step": 874 + }, + { + "epoch": 38.26086956521739, + "grad_norm": 9.526216506958008, + "learning_rate": 1.6173913043478262e-05, + "loss": 0.2285, + "step": 880 + }, + { + "epoch": 38.69565217391305, + "grad_norm": 14.653572082519531, + "learning_rate": 1.6130434782608696e-05, + "loss": 0.2196, + "step": 890 + }, + { + "epoch": 39.0, + "eval_accuracy": 0.7834645669291339, + "eval_loss": 0.6442176699638367, + "eval_runtime": 6.1843, + "eval_samples_per_second": 41.072, + "eval_steps_per_second": 0.647, + "step": 897 + }, + { + "epoch": 39.130434782608695, + "grad_norm": 6.992471694946289, + "learning_rate": 1.6086956521739132e-05, + "loss": 0.2301, + "step": 900 + }, + { + "epoch": 39.56521739130435, + "grad_norm": 15.566644668579102, + "learning_rate": 1.6043478260869566e-05, + "loss": 0.234, + "step": 910 + }, + { + "epoch": 40.0, + "grad_norm": 21.968212127685547, + "learning_rate": 1.6000000000000003e-05, + "loss": 0.23, + "step": 920 + }, + { + "epoch": 40.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.7011120915412903, + "eval_runtime": 6.1863, + "eval_samples_per_second": 41.059, + "eval_steps_per_second": 0.647, + "step": 920 + }, + { + "epoch": 40.43478260869565, + "grad_norm": 7.890230655670166, + "learning_rate": 1.5956521739130436e-05, + "loss": 0.2143, + "step": 930 + }, + { + "epoch": 40.869565217391305, + "grad_norm": 13.847317695617676, + "learning_rate": 1.591304347826087e-05, + "loss": 0.2045, + "step": 940 + }, + { + "epoch": 41.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 0.7821894288063049, + "eval_runtime": 6.1565, + "eval_samples_per_second": 41.257, + "eval_steps_per_second": 0.65, + "step": 943 + }, + { + "epoch": 41.30434782608695, + "grad_norm": 27.132835388183594, + "learning_rate": 1.5869565217391306e-05, + "loss": 0.2094, + "step": 950 + }, + { + "epoch": 41.73913043478261, + "grad_norm": 33.14794921875, + "learning_rate": 1.582608695652174e-05, + "loss": 0.2043, + "step": 960 + }, + { + "epoch": 42.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 0.7339490056037903, + "eval_runtime": 6.1427, + "eval_samples_per_second": 41.35, + "eval_steps_per_second": 0.651, + "step": 966 + }, + { + "epoch": 42.17391304347826, + "grad_norm": 9.211811065673828, + "learning_rate": 1.5782608695652177e-05, + "loss": 0.2468, + "step": 970 + }, + { + "epoch": 42.608695652173914, + "grad_norm": 18.167051315307617, + "learning_rate": 1.573913043478261e-05, + "loss": 0.2413, + "step": 980 + }, + { + "epoch": 43.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.6917413473129272, + "eval_runtime": 6.1303, + "eval_samples_per_second": 41.434, + "eval_steps_per_second": 0.652, + "step": 989 + }, + { + "epoch": 43.04347826086956, + "grad_norm": 16.584321975708008, + "learning_rate": 1.5695652173913047e-05, + "loss": 0.2255, + "step": 990 + }, + { + "epoch": 43.47826086956522, + "grad_norm": 13.140791893005371, + "learning_rate": 1.565217391304348e-05, + "loss": 0.216, + "step": 1000 + }, + { + "epoch": 43.91304347826087, + "grad_norm": 16.6044921875, + "learning_rate": 1.5608695652173914e-05, + "loss": 0.2135, + "step": 1010 + }, + { + "epoch": 44.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.695396363735199, + "eval_runtime": 6.1325, + "eval_samples_per_second": 41.419, + "eval_steps_per_second": 0.652, + "step": 1012 + }, + { + "epoch": 44.34782608695652, + "grad_norm": 7.823153495788574, + "learning_rate": 1.5565217391304347e-05, + "loss": 0.2036, + "step": 1020 + }, + { + "epoch": 44.78260869565217, + "grad_norm": 26.390613555908203, + "learning_rate": 1.5521739130434784e-05, + "loss": 0.2194, + "step": 1030 + }, + { + "epoch": 45.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.6728869080543518, + "eval_runtime": 6.0671, + "eval_samples_per_second": 41.865, + "eval_steps_per_second": 0.659, + "step": 1035 + }, + { + "epoch": 45.21739130434783, + "grad_norm": 22.04627227783203, + "learning_rate": 1.5478260869565217e-05, + "loss": 0.2219, + "step": 1040 + }, + { + "epoch": 45.65217391304348, + "grad_norm": 9.552602767944336, + "learning_rate": 1.5434782608695654e-05, + "loss": 0.211, + "step": 1050 + }, + { + "epoch": 46.0, + "eval_accuracy": 0.7834645669291339, + "eval_loss": 0.6840518712997437, + "eval_runtime": 6.1887, + "eval_samples_per_second": 41.043, + "eval_steps_per_second": 0.646, + "step": 1058 + }, + { + "epoch": 46.08695652173913, + "grad_norm": 17.527860641479492, + "learning_rate": 1.5391304347826088e-05, + "loss": 0.1984, + "step": 1060 + }, + { + "epoch": 46.52173913043478, + "grad_norm": 8.503457069396973, + "learning_rate": 1.5347826086956524e-05, + "loss": 0.1849, + "step": 1070 + }, + { + "epoch": 46.95652173913044, + "grad_norm": 27.90496826171875, + "learning_rate": 1.5304347826086958e-05, + "loss": 0.2155, + "step": 1080 + }, + { + "epoch": 47.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.7107857465744019, + "eval_runtime": 7.3514, + "eval_samples_per_second": 34.551, + "eval_steps_per_second": 0.544, + "step": 1081 + }, + { + "epoch": 47.391304347826086, + "grad_norm": 16.541719436645508, + "learning_rate": 1.5260869565217395e-05, + "loss": 0.2054, + "step": 1090 + }, + { + "epoch": 47.82608695652174, + "grad_norm": 10.804960250854492, + "learning_rate": 1.5217391304347828e-05, + "loss": 0.2231, + "step": 1100 + }, + { + "epoch": 48.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.6758210062980652, + "eval_runtime": 5.136, + "eval_samples_per_second": 49.455, + "eval_steps_per_second": 0.779, + "step": 1104 + }, + { + "epoch": 48.26086956521739, + "grad_norm": 13.976753234863281, + "learning_rate": 1.5173913043478262e-05, + "loss": 0.2362, + "step": 1110 + }, + { + "epoch": 48.69565217391305, + "grad_norm": 37.785911560058594, + "learning_rate": 1.5130434782608697e-05, + "loss": 0.2364, + "step": 1120 + }, + { + "epoch": 49.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 0.7746602892875671, + "eval_runtime": 5.5686, + "eval_samples_per_second": 45.613, + "eval_steps_per_second": 0.718, + "step": 1127 + }, + { + "epoch": 49.130434782608695, + "grad_norm": 17.750612258911133, + "learning_rate": 1.5086956521739132e-05, + "loss": 0.2044, + "step": 1130 + }, + { + "epoch": 49.56521739130435, + "grad_norm": 29.463176727294922, + "learning_rate": 1.5043478260869567e-05, + "loss": 0.2272, + "step": 1140 + }, + { + "epoch": 50.0, + "grad_norm": 21.283435821533203, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.222, + "step": 1150 + }, + { + "epoch": 50.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.7104395627975464, + "eval_runtime": 5.8427, + "eval_samples_per_second": 43.473, + "eval_steps_per_second": 0.685, + "step": 1150 + }, + { + "epoch": 50.43478260869565, + "grad_norm": 13.56606674194336, + "learning_rate": 1.4956521739130436e-05, + "loss": 0.2, + "step": 1160 + }, + { + "epoch": 50.869565217391305, + "grad_norm": 19.158952713012695, + "learning_rate": 1.491304347826087e-05, + "loss": 0.2018, + "step": 1170 + }, + { + "epoch": 51.0, + "eval_accuracy": 0.7952755905511811, + "eval_loss": 0.6884562969207764, + "eval_runtime": 6.9894, + "eval_samples_per_second": 36.341, + "eval_steps_per_second": 0.572, + "step": 1173 + }, + { + "epoch": 51.30434782608695, + "grad_norm": 15.846772193908691, + "learning_rate": 1.4869565217391306e-05, + "loss": 0.2231, + "step": 1180 + }, + { + "epoch": 51.73913043478261, + "grad_norm": 19.628162384033203, + "learning_rate": 1.4826086956521741e-05, + "loss": 0.219, + "step": 1190 + }, + { + "epoch": 52.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 0.7609480023384094, + "eval_runtime": 5.6933, + "eval_samples_per_second": 44.614, + "eval_steps_per_second": 0.703, + "step": 1196 + }, + { + "epoch": 52.17391304347826, + "grad_norm": 13.08530044555664, + "learning_rate": 1.4782608695652174e-05, + "loss": 0.1924, + "step": 1200 + }, + { + "epoch": 52.608695652173914, + "grad_norm": 18.541603088378906, + "learning_rate": 1.473913043478261e-05, + "loss": 0.1916, + "step": 1210 + }, + { + "epoch": 53.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.83939129114151, + "eval_runtime": 5.8715, + "eval_samples_per_second": 43.26, + "eval_steps_per_second": 0.681, + "step": 1219 + }, + { + "epoch": 53.04347826086956, + "grad_norm": 25.077634811401367, + "learning_rate": 1.4695652173913045e-05, + "loss": 0.2072, + "step": 1220 + }, + { + "epoch": 53.47826086956522, + "grad_norm": 13.322381973266602, + "learning_rate": 1.465217391304348e-05, + "loss": 0.1981, + "step": 1230 + }, + { + "epoch": 53.91304347826087, + "grad_norm": 37.27448654174805, + "learning_rate": 1.4608695652173915e-05, + "loss": 0.1767, + "step": 1240 + }, + { + "epoch": 54.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.7909868955612183, + "eval_runtime": 5.8932, + "eval_samples_per_second": 43.101, + "eval_steps_per_second": 0.679, + "step": 1242 + }, + { + "epoch": 54.34782608695652, + "grad_norm": 7.898425579071045, + "learning_rate": 1.456521739130435e-05, + "loss": 0.1524, + "step": 1250 + }, + { + "epoch": 54.78260869565217, + "grad_norm": 23.582290649414062, + "learning_rate": 1.4521739130434785e-05, + "loss": 0.236, + "step": 1260 + }, + { + "epoch": 55.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.7601104974746704, + "eval_runtime": 5.1002, + "eval_samples_per_second": 49.802, + "eval_steps_per_second": 0.784, + "step": 1265 + }, + { + "epoch": 55.21739130434783, + "grad_norm": 18.55949592590332, + "learning_rate": 1.447826086956522e-05, + "loss": 0.2053, + "step": 1270 + }, + { + "epoch": 55.65217391304348, + "grad_norm": 11.066632270812988, + "learning_rate": 1.4434782608695654e-05, + "loss": 0.1898, + "step": 1280 + }, + { + "epoch": 56.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.7501403093338013, + "eval_runtime": 6.1846, + "eval_samples_per_second": 41.07, + "eval_steps_per_second": 0.647, + "step": 1288 + }, + { + "epoch": 56.08695652173913, + "grad_norm": 13.702197074890137, + "learning_rate": 1.4391304347826087e-05, + "loss": 0.1817, + "step": 1290 + }, + { + "epoch": 56.52173913043478, + "grad_norm": 12.48442268371582, + "learning_rate": 1.4347826086956522e-05, + "loss": 0.2184, + "step": 1300 + }, + { + "epoch": 56.95652173913044, + "grad_norm": 12.403263092041016, + "learning_rate": 1.4304347826086957e-05, + "loss": 0.1876, + "step": 1310 + }, + { + "epoch": 57.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.7492194175720215, + "eval_runtime": 5.4019, + "eval_samples_per_second": 47.02, + "eval_steps_per_second": 0.74, + "step": 1311 + }, + { + "epoch": 57.391304347826086, + "grad_norm": 46.26993179321289, + "learning_rate": 1.4260869565217392e-05, + "loss": 0.2015, + "step": 1320 + }, + { + "epoch": 57.82608695652174, + "grad_norm": 18.550594329833984, + "learning_rate": 1.4217391304347828e-05, + "loss": 0.1592, + "step": 1330 + }, + { + "epoch": 58.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.7905071377754211, + "eval_runtime": 5.5787, + "eval_samples_per_second": 45.531, + "eval_steps_per_second": 0.717, + "step": 1334 + }, + { + "epoch": 58.26086956521739, + "grad_norm": 5.595022201538086, + "learning_rate": 1.4173913043478263e-05, + "loss": 0.1851, + "step": 1340 + }, + { + "epoch": 58.69565217391305, + "grad_norm": 12.843214988708496, + "learning_rate": 1.4130434782608698e-05, + "loss": 0.1772, + "step": 1350 + }, + { + "epoch": 59.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.7410995364189148, + "eval_runtime": 5.5315, + "eval_samples_per_second": 45.919, + "eval_steps_per_second": 0.723, + "step": 1357 + }, + { + "epoch": 59.130434782608695, + "grad_norm": 15.449782371520996, + "learning_rate": 1.4086956521739133e-05, + "loss": 0.2286, + "step": 1360 + }, + { + "epoch": 59.56521739130435, + "grad_norm": 13.496415138244629, + "learning_rate": 1.4043478260869568e-05, + "loss": 0.1659, + "step": 1370 + }, + { + "epoch": 60.0, + "grad_norm": 18.721599578857422, + "learning_rate": 1.4e-05, + "loss": 0.1787, + "step": 1380 + }, + { + "epoch": 60.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.8145360946655273, + "eval_runtime": 5.7016, + "eval_samples_per_second": 44.549, + "eval_steps_per_second": 0.702, + "step": 1380 + }, + { + "epoch": 60.43478260869565, + "grad_norm": 10.89456558227539, + "learning_rate": 1.3956521739130435e-05, + "loss": 0.1598, + "step": 1390 + }, + { + "epoch": 60.869565217391305, + "grad_norm": 13.629638671875, + "learning_rate": 1.391304347826087e-05, + "loss": 0.1782, + "step": 1400 + }, + { + "epoch": 61.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.7721127271652222, + "eval_runtime": 5.8504, + "eval_samples_per_second": 43.416, + "eval_steps_per_second": 0.684, + "step": 1403 + }, + { + "epoch": 61.30434782608695, + "grad_norm": 17.057193756103516, + "learning_rate": 1.3869565217391305e-05, + "loss": 0.1892, + "step": 1410 + }, + { + "epoch": 61.73913043478261, + "grad_norm": 18.26725196838379, + "learning_rate": 1.382608695652174e-05, + "loss": 0.1781, + "step": 1420 + }, + { + "epoch": 62.0, + "eval_accuracy": 0.7834645669291339, + "eval_loss": 0.8022087216377258, + "eval_runtime": 5.9987, + "eval_samples_per_second": 42.342, + "eval_steps_per_second": 0.667, + "step": 1426 + }, + { + "epoch": 62.17391304347826, + "grad_norm": 23.26697540283203, + "learning_rate": 1.3782608695652175e-05, + "loss": 0.1886, + "step": 1430 + }, + { + "epoch": 62.608695652173914, + "grad_norm": 16.03859519958496, + "learning_rate": 1.373913043478261e-05, + "loss": 0.1884, + "step": 1440 + }, + { + "epoch": 63.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.8629626035690308, + "eval_runtime": 5.976, + "eval_samples_per_second": 42.504, + "eval_steps_per_second": 0.669, + "step": 1449 + }, + { + "epoch": 63.04347826086956, + "grad_norm": 14.661111831665039, + "learning_rate": 1.3695652173913046e-05, + "loss": 0.1762, + "step": 1450 + }, + { + "epoch": 63.47826086956522, + "grad_norm": 11.116896629333496, + "learning_rate": 1.3652173913043479e-05, + "loss": 0.162, + "step": 1460 + }, + { + "epoch": 63.91304347826087, + "grad_norm": 17.106279373168945, + "learning_rate": 1.3608695652173913e-05, + "loss": 0.1905, + "step": 1470 + }, + { + "epoch": 64.0, + "eval_accuracy": 0.7952755905511811, + "eval_loss": 0.7472063899040222, + "eval_runtime": 5.0119, + "eval_samples_per_second": 50.68, + "eval_steps_per_second": 0.798, + "step": 1472 + }, + { + "epoch": 64.34782608695652, + "grad_norm": 17.491132736206055, + "learning_rate": 1.3565217391304348e-05, + "loss": 0.1824, + "step": 1480 + }, + { + "epoch": 64.78260869565217, + "grad_norm": 14.771021842956543, + "learning_rate": 1.3521739130434783e-05, + "loss": 0.16, + "step": 1490 + }, + { + "epoch": 65.0, + "eval_accuracy": 0.7874015748031497, + "eval_loss": 0.7761121988296509, + "eval_runtime": 6.264, + "eval_samples_per_second": 40.549, + "eval_steps_per_second": 0.639, + "step": 1495 + }, + { + "epoch": 65.21739130434783, + "grad_norm": 11.443580627441406, + "learning_rate": 1.3478260869565218e-05, + "loss": 0.1691, + "step": 1500 + }, + { + "epoch": 65.65217391304348, + "grad_norm": 9.551299095153809, + "learning_rate": 1.3434782608695653e-05, + "loss": 0.1619, + "step": 1510 + }, + { + "epoch": 66.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.858647882938385, + "eval_runtime": 5.0805, + "eval_samples_per_second": 49.995, + "eval_steps_per_second": 0.787, + "step": 1518 + }, + { + "epoch": 66.08695652173913, + "grad_norm": 6.219148635864258, + "learning_rate": 1.3391304347826088e-05, + "loss": 0.1517, + "step": 1520 + }, + { + "epoch": 66.52173913043478, + "grad_norm": 18.751920700073242, + "learning_rate": 1.3347826086956523e-05, + "loss": 0.1635, + "step": 1530 + }, + { + "epoch": 66.95652173913044, + "grad_norm": 8.722993850708008, + "learning_rate": 1.3304347826086958e-05, + "loss": 0.1768, + "step": 1540 + }, + { + "epoch": 67.0, + "eval_accuracy": 0.7834645669291339, + "eval_loss": 0.7699764966964722, + "eval_runtime": 5.8289, + "eval_samples_per_second": 43.576, + "eval_steps_per_second": 0.686, + "step": 1541 + }, + { + "epoch": 67.3913043478261, + "grad_norm": 16.816171646118164, + "learning_rate": 1.3260869565217392e-05, + "loss": 0.184, + "step": 1550 + }, + { + "epoch": 67.82608695652173, + "grad_norm": 10.644329071044922, + "learning_rate": 1.3217391304347827e-05, + "loss": 0.1395, + "step": 1560 + }, + { + "epoch": 68.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.8326212763786316, + "eval_runtime": 6.0684, + "eval_samples_per_second": 41.856, + "eval_steps_per_second": 0.659, + "step": 1564 + }, + { + "epoch": 68.26086956521739, + "grad_norm": 13.280193328857422, + "learning_rate": 1.3173913043478262e-05, + "loss": 0.1954, + "step": 1570 + }, + { + "epoch": 68.69565217391305, + "grad_norm": 15.933572769165039, + "learning_rate": 1.3130434782608697e-05, + "loss": 0.1536, + "step": 1580 + }, + { + "epoch": 69.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.8442131280899048, + "eval_runtime": 5.1134, + "eval_samples_per_second": 49.673, + "eval_steps_per_second": 0.782, + "step": 1587 + }, + { + "epoch": 69.1304347826087, + "grad_norm": 8.563169479370117, + "learning_rate": 1.308695652173913e-05, + "loss": 0.1859, + "step": 1590 + }, + { + "epoch": 69.56521739130434, + "grad_norm": 52.772857666015625, + "learning_rate": 1.3043478260869566e-05, + "loss": 0.1987, + "step": 1600 + }, + { + "epoch": 70.0, + "grad_norm": 40.454124450683594, + "learning_rate": 1.3000000000000001e-05, + "loss": 0.208, + "step": 1610 + }, + { + "epoch": 70.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.9288918972015381, + "eval_runtime": 6.0792, + "eval_samples_per_second": 41.782, + "eval_steps_per_second": 0.658, + "step": 1610 + }, + { + "epoch": 70.43478260869566, + "grad_norm": 6.047575950622559, + "learning_rate": 1.2956521739130436e-05, + "loss": 0.1494, + "step": 1620 + }, + { + "epoch": 70.8695652173913, + "grad_norm": 24.65239143371582, + "learning_rate": 1.2913043478260871e-05, + "loss": 0.1783, + "step": 1630 + }, + { + "epoch": 71.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.9022064805030823, + "eval_runtime": 5.9906, + "eval_samples_per_second": 42.4, + "eval_steps_per_second": 0.668, + "step": 1633 + }, + { + "epoch": 71.30434782608695, + "grad_norm": 10.55053424835205, + "learning_rate": 1.2869565217391305e-05, + "loss": 0.1737, + "step": 1640 + }, + { + "epoch": 71.73913043478261, + "grad_norm": 10.525084495544434, + "learning_rate": 1.282608695652174e-05, + "loss": 0.1572, + "step": 1650 + }, + { + "epoch": 72.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.8510112166404724, + "eval_runtime": 5.7557, + "eval_samples_per_second": 44.13, + "eval_steps_per_second": 0.695, + "step": 1656 + }, + { + "epoch": 72.17391304347827, + "grad_norm": 8.981342315673828, + "learning_rate": 1.2782608695652175e-05, + "loss": 0.1407, + "step": 1660 + }, + { + "epoch": 72.6086956521739, + "grad_norm": 10.919659614562988, + "learning_rate": 1.273913043478261e-05, + "loss": 0.1349, + "step": 1670 + }, + { + "epoch": 73.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.7962220907211304, + "eval_runtime": 6.421, + "eval_samples_per_second": 39.558, + "eval_steps_per_second": 0.623, + "step": 1679 + }, + { + "epoch": 73.04347826086956, + "grad_norm": 16.983463287353516, + "learning_rate": 1.2695652173913045e-05, + "loss": 0.1981, + "step": 1680 + }, + { + "epoch": 73.47826086956522, + "grad_norm": 4.827481269836426, + "learning_rate": 1.265217391304348e-05, + "loss": 0.1354, + "step": 1690 + }, + { + "epoch": 73.91304347826087, + "grad_norm": 7.88926887512207, + "learning_rate": 1.2608695652173915e-05, + "loss": 0.148, + "step": 1700 + }, + { + "epoch": 74.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.8641188144683838, + "eval_runtime": 6.5823, + "eval_samples_per_second": 38.588, + "eval_steps_per_second": 0.608, + "step": 1702 + }, + { + "epoch": 74.34782608695652, + "grad_norm": 15.213589668273926, + "learning_rate": 1.2565217391304349e-05, + "loss": 0.1763, + "step": 1710 + }, + { + "epoch": 74.78260869565217, + "grad_norm": 10.891641616821289, + "learning_rate": 1.2521739130434784e-05, + "loss": 0.1768, + "step": 1720 + }, + { + "epoch": 75.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.9277058839797974, + "eval_runtime": 5.6008, + "eval_samples_per_second": 45.351, + "eval_steps_per_second": 0.714, + "step": 1725 + }, + { + "epoch": 75.21739130434783, + "grad_norm": 17.890514373779297, + "learning_rate": 1.2478260869565217e-05, + "loss": 0.1467, + "step": 1730 + }, + { + "epoch": 75.65217391304348, + "grad_norm": 19.329357147216797, + "learning_rate": 1.2434782608695652e-05, + "loss": 0.1833, + "step": 1740 + }, + { + "epoch": 76.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.8663110136985779, + "eval_runtime": 5.6029, + "eval_samples_per_second": 45.334, + "eval_steps_per_second": 0.714, + "step": 1748 + }, + { + "epoch": 76.08695652173913, + "grad_norm": 21.218746185302734, + "learning_rate": 1.2391304347826088e-05, + "loss": 0.1451, + "step": 1750 + }, + { + "epoch": 76.52173913043478, + "grad_norm": 14.454313278198242, + "learning_rate": 1.2347826086956523e-05, + "loss": 0.1568, + "step": 1760 + }, + { + "epoch": 76.95652173913044, + "grad_norm": 17.544715881347656, + "learning_rate": 1.2304347826086958e-05, + "loss": 0.1696, + "step": 1770 + }, + { + "epoch": 77.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.8302040696144104, + "eval_runtime": 5.0767, + "eval_samples_per_second": 50.032, + "eval_steps_per_second": 0.788, + "step": 1771 + }, + { + "epoch": 77.3913043478261, + "grad_norm": 23.46592903137207, + "learning_rate": 1.2260869565217393e-05, + "loss": 0.1504, + "step": 1780 + }, + { + "epoch": 77.82608695652173, + "grad_norm": 10.731809616088867, + "learning_rate": 1.2217391304347828e-05, + "loss": 0.1577, + "step": 1790 + }, + { + "epoch": 78.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.8575807213783264, + "eval_runtime": 4.9965, + "eval_samples_per_second": 50.836, + "eval_steps_per_second": 0.801, + "step": 1794 + }, + { + "epoch": 78.26086956521739, + "grad_norm": 13.635187149047852, + "learning_rate": 1.2173913043478263e-05, + "loss": 0.1316, + "step": 1800 + }, + { + "epoch": 78.69565217391305, + "grad_norm": 13.30216121673584, + "learning_rate": 1.2130434782608698e-05, + "loss": 0.1724, + "step": 1810 + }, + { + "epoch": 79.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 0.8651734590530396, + "eval_runtime": 5.1165, + "eval_samples_per_second": 49.643, + "eval_steps_per_second": 0.782, + "step": 1817 + }, + { + "epoch": 79.1304347826087, + "grad_norm": 12.134591102600098, + "learning_rate": 1.208695652173913e-05, + "loss": 0.1608, + "step": 1820 + }, + { + "epoch": 79.56521739130434, + "grad_norm": 11.177396774291992, + "learning_rate": 1.2043478260869565e-05, + "loss": 0.1615, + "step": 1830 + }, + { + "epoch": 80.0, + "grad_norm": 9.49387264251709, + "learning_rate": 1.2e-05, + "loss": 0.1525, + "step": 1840 + }, + { + "epoch": 80.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.8567054271697998, + "eval_runtime": 5.5937, + "eval_samples_per_second": 45.408, + "eval_steps_per_second": 0.715, + "step": 1840 + }, + { + "epoch": 80.43478260869566, + "grad_norm": 7.956330299377441, + "learning_rate": 1.1956521739130435e-05, + "loss": 0.1478, + "step": 1850 + }, + { + "epoch": 80.8695652173913, + "grad_norm": 14.717869758605957, + "learning_rate": 1.191304347826087e-05, + "loss": 0.158, + "step": 1860 + }, + { + "epoch": 81.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 0.9139416217803955, + "eval_runtime": 5.5012, + "eval_samples_per_second": 46.172, + "eval_steps_per_second": 0.727, + "step": 1863 + }, + { + "epoch": 81.30434782608695, + "grad_norm": 9.091207504272461, + "learning_rate": 1.1869565217391306e-05, + "loss": 0.1738, + "step": 1870 + }, + { + "epoch": 81.73913043478261, + "grad_norm": 13.691263198852539, + "learning_rate": 1.182608695652174e-05, + "loss": 0.1639, + "step": 1880 + }, + { + "epoch": 82.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 0.9688799977302551, + "eval_runtime": 5.0902, + "eval_samples_per_second": 49.9, + "eval_steps_per_second": 0.786, + "step": 1886 + }, + { + "epoch": 82.17391304347827, + "grad_norm": 17.235044479370117, + "learning_rate": 1.1782608695652176e-05, + "loss": 0.1849, + "step": 1890 + }, + { + "epoch": 82.6086956521739, + "grad_norm": 22.74346923828125, + "learning_rate": 1.1739130434782611e-05, + "loss": 0.1424, + "step": 1900 + }, + { + "epoch": 83.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.9698485136032104, + "eval_runtime": 4.9865, + "eval_samples_per_second": 50.938, + "eval_steps_per_second": 0.802, + "step": 1909 + }, + { + "epoch": 83.04347826086956, + "grad_norm": 16.867551803588867, + "learning_rate": 1.1695652173913043e-05, + "loss": 0.1463, + "step": 1910 + }, + { + "epoch": 83.47826086956522, + "grad_norm": 5.856212615966797, + "learning_rate": 1.1652173913043478e-05, + "loss": 0.1382, + "step": 1920 + }, + { + "epoch": 83.91304347826087, + "grad_norm": 14.235991477966309, + "learning_rate": 1.1608695652173913e-05, + "loss": 0.1224, + "step": 1930 + }, + { + "epoch": 84.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 1.0238784551620483, + "eval_runtime": 5.1148, + "eval_samples_per_second": 49.66, + "eval_steps_per_second": 0.782, + "step": 1932 + }, + { + "epoch": 84.34782608695652, + "grad_norm": 5.4066925048828125, + "learning_rate": 1.1565217391304348e-05, + "loss": 0.1361, + "step": 1940 + }, + { + "epoch": 84.78260869565217, + "grad_norm": 9.836471557617188, + "learning_rate": 1.1521739130434783e-05, + "loss": 0.1765, + "step": 1950 + }, + { + "epoch": 85.0, + "eval_accuracy": 0.7795275590551181, + "eval_loss": 0.9071526527404785, + "eval_runtime": 6.2721, + "eval_samples_per_second": 40.497, + "eval_steps_per_second": 0.638, + "step": 1955 + }, + { + "epoch": 85.21739130434783, + "grad_norm": 17.78875160217285, + "learning_rate": 1.1478260869565218e-05, + "loss": 0.1696, + "step": 1960 + }, + { + "epoch": 85.65217391304348, + "grad_norm": 12.22424602508545, + "learning_rate": 1.1434782608695654e-05, + "loss": 0.1726, + "step": 1970 + }, + { + "epoch": 86.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 0.9436205625534058, + "eval_runtime": 5.3198, + "eval_samples_per_second": 47.746, + "eval_steps_per_second": 0.752, + "step": 1978 + }, + { + "epoch": 86.08695652173913, + "grad_norm": 18.984779357910156, + "learning_rate": 1.1391304347826089e-05, + "loss": 0.1716, + "step": 1980 + }, + { + "epoch": 86.52173913043478, + "grad_norm": 12.640647888183594, + "learning_rate": 1.1347826086956524e-05, + "loss": 0.153, + "step": 1990 + }, + { + "epoch": 86.95652173913044, + "grad_norm": 20.94854736328125, + "learning_rate": 1.1304347826086957e-05, + "loss": 0.1584, + "step": 2000 + }, + { + "epoch": 87.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.8775471448898315, + "eval_runtime": 5.2147, + "eval_samples_per_second": 48.708, + "eval_steps_per_second": 0.767, + "step": 2001 + }, + { + "epoch": 87.3913043478261, + "grad_norm": 16.81257438659668, + "learning_rate": 1.1260869565217392e-05, + "loss": 0.1945, + "step": 2010 + }, + { + "epoch": 87.82608695652173, + "grad_norm": 7.593163013458252, + "learning_rate": 1.1217391304347827e-05, + "loss": 0.164, + "step": 2020 + }, + { + "epoch": 88.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.8591587543487549, + "eval_runtime": 6.3339, + "eval_samples_per_second": 40.102, + "eval_steps_per_second": 0.632, + "step": 2024 + }, + { + "epoch": 88.26086956521739, + "grad_norm": 27.010921478271484, + "learning_rate": 1.1173913043478261e-05, + "loss": 0.1514, + "step": 2030 + }, + { + "epoch": 88.69565217391305, + "grad_norm": 11.01710033416748, + "learning_rate": 1.1130434782608696e-05, + "loss": 0.1682, + "step": 2040 + }, + { + "epoch": 89.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.9051375389099121, + "eval_runtime": 6.2969, + "eval_samples_per_second": 40.337, + "eval_steps_per_second": 0.635, + "step": 2047 + }, + { + "epoch": 89.1304347826087, + "grad_norm": 7.84626579284668, + "learning_rate": 1.1086956521739131e-05, + "loss": 0.1364, + "step": 2050 + }, + { + "epoch": 89.56521739130434, + "grad_norm": 10.766637802124023, + "learning_rate": 1.1043478260869566e-05, + "loss": 0.2003, + "step": 2060 + }, + { + "epoch": 90.0, + "grad_norm": 16.38211441040039, + "learning_rate": 1.1000000000000001e-05, + "loss": 0.1455, + "step": 2070 + }, + { + "epoch": 90.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 1.0020496845245361, + "eval_runtime": 6.3353, + "eval_samples_per_second": 40.093, + "eval_steps_per_second": 0.631, + "step": 2070 + }, + { + "epoch": 90.43478260869566, + "grad_norm": 8.20938491821289, + "learning_rate": 1.0956521739130435e-05, + "loss": 0.1372, + "step": 2080 + }, + { + "epoch": 90.8695652173913, + "grad_norm": 29.13675880432129, + "learning_rate": 1.091304347826087e-05, + "loss": 0.1596, + "step": 2090 + }, + { + "epoch": 91.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.9422626495361328, + "eval_runtime": 5.3345, + "eval_samples_per_second": 47.614, + "eval_steps_per_second": 0.75, + "step": 2093 + }, + { + "epoch": 91.30434782608695, + "grad_norm": 16.11428451538086, + "learning_rate": 1.0869565217391305e-05, + "loss": 0.1704, + "step": 2100 + }, + { + "epoch": 91.73913043478261, + "grad_norm": 11.314476013183594, + "learning_rate": 1.082608695652174e-05, + "loss": 0.1667, + "step": 2110 + }, + { + "epoch": 92.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.9586116671562195, + "eval_runtime": 6.2772, + "eval_samples_per_second": 40.464, + "eval_steps_per_second": 0.637, + "step": 2116 + }, + { + "epoch": 92.17391304347827, + "grad_norm": 24.264659881591797, + "learning_rate": 1.0782608695652175e-05, + "loss": 0.1439, + "step": 2120 + }, + { + "epoch": 92.6086956521739, + "grad_norm": 13.49873161315918, + "learning_rate": 1.073913043478261e-05, + "loss": 0.132, + "step": 2130 + }, + { + "epoch": 93.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.9890474081039429, + "eval_runtime": 6.376, + "eval_samples_per_second": 39.837, + "eval_steps_per_second": 0.627, + "step": 2139 + }, + { + "epoch": 93.04347826086956, + "grad_norm": 14.934507369995117, + "learning_rate": 1.0695652173913046e-05, + "loss": 0.1715, + "step": 2140 + }, + { + "epoch": 93.47826086956522, + "grad_norm": 7.096430778503418, + "learning_rate": 1.0652173913043479e-05, + "loss": 0.1454, + "step": 2150 + }, + { + "epoch": 93.91304347826087, + "grad_norm": 15.230493545532227, + "learning_rate": 1.0608695652173914e-05, + "loss": 0.1335, + "step": 2160 + }, + { + "epoch": 94.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 0.9922319054603577, + "eval_runtime": 5.2755, + "eval_samples_per_second": 48.147, + "eval_steps_per_second": 0.758, + "step": 2162 + }, + { + "epoch": 94.34782608695652, + "grad_norm": 17.714771270751953, + "learning_rate": 1.0565217391304348e-05, + "loss": 0.1593, + "step": 2170 + }, + { + "epoch": 94.78260869565217, + "grad_norm": 33.39093780517578, + "learning_rate": 1.0521739130434783e-05, + "loss": 0.1538, + "step": 2180 + }, + { + "epoch": 95.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 0.9534251093864441, + "eval_runtime": 5.5144, + "eval_samples_per_second": 46.061, + "eval_steps_per_second": 0.725, + "step": 2185 + }, + { + "epoch": 95.21739130434783, + "grad_norm": 17.226415634155273, + "learning_rate": 1.0478260869565218e-05, + "loss": 0.1422, + "step": 2190 + }, + { + "epoch": 95.65217391304348, + "grad_norm": 17.667068481445312, + "learning_rate": 1.0434782608695653e-05, + "loss": 0.1288, + "step": 2200 + }, + { + "epoch": 96.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.0713515281677246, + "eval_runtime": 5.5478, + "eval_samples_per_second": 45.784, + "eval_steps_per_second": 0.721, + "step": 2208 + }, + { + "epoch": 96.08695652173913, + "grad_norm": 10.762154579162598, + "learning_rate": 1.0391304347826088e-05, + "loss": 0.1204, + "step": 2210 + }, + { + "epoch": 96.52173913043478, + "grad_norm": 31.42228126525879, + "learning_rate": 1.0347826086956523e-05, + "loss": 0.1401, + "step": 2220 + }, + { + "epoch": 96.95652173913044, + "grad_norm": 10.302103996276855, + "learning_rate": 1.0304347826086958e-05, + "loss": 0.1661, + "step": 2230 + }, + { + "epoch": 97.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 0.9949864745140076, + "eval_runtime": 6.453, + "eval_samples_per_second": 39.361, + "eval_steps_per_second": 0.62, + "step": 2231 + }, + { + "epoch": 97.3913043478261, + "grad_norm": 13.885024070739746, + "learning_rate": 1.0260869565217393e-05, + "loss": 0.171, + "step": 2240 + }, + { + "epoch": 97.82608695652173, + "grad_norm": 20.33379364013672, + "learning_rate": 1.0217391304347829e-05, + "loss": 0.1392, + "step": 2250 + }, + { + "epoch": 98.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 0.9865681529045105, + "eval_runtime": 5.2827, + "eval_samples_per_second": 48.081, + "eval_steps_per_second": 0.757, + "step": 2254 + }, + { + "epoch": 98.26086956521739, + "grad_norm": 22.363279342651367, + "learning_rate": 1.017391304347826e-05, + "loss": 0.1669, + "step": 2260 + }, + { + "epoch": 98.69565217391305, + "grad_norm": 27.860618591308594, + "learning_rate": 1.0130434782608695e-05, + "loss": 0.1413, + "step": 2270 + }, + { + "epoch": 99.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 1.0637905597686768, + "eval_runtime": 5.2324, + "eval_samples_per_second": 48.544, + "eval_steps_per_second": 0.764, + "step": 2277 + }, + { + "epoch": 99.1304347826087, + "grad_norm": 15.204286575317383, + "learning_rate": 1.008695652173913e-05, + "loss": 0.1153, + "step": 2280 + }, + { + "epoch": 99.56521739130434, + "grad_norm": 14.230497360229492, + "learning_rate": 1.0043478260869566e-05, + "loss": 0.1309, + "step": 2290 + }, + { + "epoch": 100.0, + "grad_norm": 14.642973899841309, + "learning_rate": 1e-05, + "loss": 0.1619, + "step": 2300 + }, + { + "epoch": 100.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 1.0178251266479492, + "eval_runtime": 5.2064, + "eval_samples_per_second": 48.787, + "eval_steps_per_second": 0.768, + "step": 2300 + }, + { + "epoch": 100.43478260869566, + "grad_norm": 64.10249328613281, + "learning_rate": 9.956521739130436e-06, + "loss": 0.1249, + "step": 2310 + }, + { + "epoch": 100.8695652173913, + "grad_norm": 8.547202110290527, + "learning_rate": 9.913043478260871e-06, + "loss": 0.1537, + "step": 2320 + }, + { + "epoch": 101.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.9891794919967651, + "eval_runtime": 5.2872, + "eval_samples_per_second": 48.04, + "eval_steps_per_second": 0.757, + "step": 2323 + }, + { + "epoch": 101.30434782608695, + "grad_norm": 21.414203643798828, + "learning_rate": 9.869565217391304e-06, + "loss": 0.1626, + "step": 2330 + }, + { + "epoch": 101.73913043478261, + "grad_norm": 7.053102970123291, + "learning_rate": 9.82608695652174e-06, + "loss": 0.137, + "step": 2340 + }, + { + "epoch": 102.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 0.9523509740829468, + "eval_runtime": 5.9665, + "eval_samples_per_second": 42.571, + "eval_steps_per_second": 0.67, + "step": 2346 + }, + { + "epoch": 102.17391304347827, + "grad_norm": 18.426395416259766, + "learning_rate": 9.782608695652175e-06, + "loss": 0.1623, + "step": 2350 + }, + { + "epoch": 102.6086956521739, + "grad_norm": 7.689826011657715, + "learning_rate": 9.73913043478261e-06, + "loss": 0.1416, + "step": 2360 + }, + { + "epoch": 103.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.0539218187332153, + "eval_runtime": 6.2316, + "eval_samples_per_second": 40.76, + "eval_steps_per_second": 0.642, + "step": 2369 + }, + { + "epoch": 103.04347826086956, + "grad_norm": 7.151523590087891, + "learning_rate": 9.695652173913043e-06, + "loss": 0.1245, + "step": 2370 + }, + { + "epoch": 103.47826086956522, + "grad_norm": 15.233275413513184, + "learning_rate": 9.652173913043478e-06, + "loss": 0.1347, + "step": 2380 + }, + { + "epoch": 103.91304347826087, + "grad_norm": 6.604703903198242, + "learning_rate": 9.608695652173914e-06, + "loss": 0.1477, + "step": 2390 + }, + { + "epoch": 104.0, + "eval_accuracy": 0.7283464566929134, + "eval_loss": 1.0824700593948364, + "eval_runtime": 5.2926, + "eval_samples_per_second": 47.992, + "eval_steps_per_second": 0.756, + "step": 2392 + }, + { + "epoch": 104.34782608695652, + "grad_norm": 16.267160415649414, + "learning_rate": 9.565217391304349e-06, + "loss": 0.1353, + "step": 2400 + }, + { + "epoch": 104.78260869565217, + "grad_norm": 14.780786514282227, + "learning_rate": 9.521739130434784e-06, + "loss": 0.1283, + "step": 2410 + }, + { + "epoch": 105.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.0008113384246826, + "eval_runtime": 5.335, + "eval_samples_per_second": 47.61, + "eval_steps_per_second": 0.75, + "step": 2415 + }, + { + "epoch": 105.21739130434783, + "grad_norm": 18.90896224975586, + "learning_rate": 9.478260869565217e-06, + "loss": 0.1235, + "step": 2420 + }, + { + "epoch": 105.65217391304348, + "grad_norm": 13.357507705688477, + "learning_rate": 9.434782608695652e-06, + "loss": 0.1498, + "step": 2430 + }, + { + "epoch": 106.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.9702416658401489, + "eval_runtime": 5.3141, + "eval_samples_per_second": 47.797, + "eval_steps_per_second": 0.753, + "step": 2438 + }, + { + "epoch": 106.08695652173913, + "grad_norm": 15.780552864074707, + "learning_rate": 9.391304347826087e-06, + "loss": 0.1228, + "step": 2440 + }, + { + "epoch": 106.52173913043478, + "grad_norm": 17.9113826751709, + "learning_rate": 9.347826086956523e-06, + "loss": 0.1394, + "step": 2450 + }, + { + "epoch": 106.95652173913044, + "grad_norm": 9.112041473388672, + "learning_rate": 9.304347826086956e-06, + "loss": 0.1576, + "step": 2460 + }, + { + "epoch": 107.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 1.0144392251968384, + "eval_runtime": 5.3399, + "eval_samples_per_second": 47.567, + "eval_steps_per_second": 0.749, + "step": 2461 + }, + { + "epoch": 107.3913043478261, + "grad_norm": 19.214317321777344, + "learning_rate": 9.260869565217391e-06, + "loss": 0.1488, + "step": 2470 + }, + { + "epoch": 107.82608695652173, + "grad_norm": 12.886323928833008, + "learning_rate": 9.217391304347826e-06, + "loss": 0.1433, + "step": 2480 + }, + { + "epoch": 108.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 0.945662260055542, + "eval_runtime": 5.4883, + "eval_samples_per_second": 46.28, + "eval_steps_per_second": 0.729, + "step": 2484 + }, + { + "epoch": 108.26086956521739, + "grad_norm": 6.37844181060791, + "learning_rate": 9.173913043478261e-06, + "loss": 0.1411, + "step": 2490 + }, + { + "epoch": 108.69565217391305, + "grad_norm": 8.28097152709961, + "learning_rate": 9.130434782608697e-06, + "loss": 0.1377, + "step": 2500 + }, + { + "epoch": 109.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.9770110249519348, + "eval_runtime": 5.6903, + "eval_samples_per_second": 44.638, + "eval_steps_per_second": 0.703, + "step": 2507 + }, + { + "epoch": 109.1304347826087, + "grad_norm": 14.171891212463379, + "learning_rate": 9.086956521739132e-06, + "loss": 0.1449, + "step": 2510 + }, + { + "epoch": 109.56521739130434, + "grad_norm": 7.651449203491211, + "learning_rate": 9.043478260869565e-06, + "loss": 0.1068, + "step": 2520 + }, + { + "epoch": 110.0, + "grad_norm": 8.761197090148926, + "learning_rate": 9e-06, + "loss": 0.1163, + "step": 2530 + }, + { + "epoch": 110.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 1.1386067867279053, + "eval_runtime": 5.7019, + "eval_samples_per_second": 44.546, + "eval_steps_per_second": 0.702, + "step": 2530 + }, + { + "epoch": 110.43478260869566, + "grad_norm": 15.50783634185791, + "learning_rate": 8.956521739130435e-06, + "loss": 0.1379, + "step": 2540 + }, + { + "epoch": 110.8695652173913, + "grad_norm": 19.807313919067383, + "learning_rate": 8.91304347826087e-06, + "loss": 0.1449, + "step": 2550 + }, + { + "epoch": 111.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 1.0589202642440796, + "eval_runtime": 6.1192, + "eval_samples_per_second": 41.509, + "eval_steps_per_second": 0.654, + "step": 2553 + }, + { + "epoch": 111.30434782608695, + "grad_norm": 15.006197929382324, + "learning_rate": 8.869565217391306e-06, + "loss": 0.1397, + "step": 2560 + }, + { + "epoch": 111.73913043478261, + "grad_norm": 24.991825103759766, + "learning_rate": 8.82608695652174e-06, + "loss": 0.1475, + "step": 2570 + }, + { + "epoch": 112.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.0109583139419556, + "eval_runtime": 6.251, + "eval_samples_per_second": 40.633, + "eval_steps_per_second": 0.64, + "step": 2576 + }, + { + "epoch": 112.17391304347827, + "grad_norm": 15.339753150939941, + "learning_rate": 8.782608695652174e-06, + "loss": 0.1204, + "step": 2580 + }, + { + "epoch": 112.6086956521739, + "grad_norm": 17.208599090576172, + "learning_rate": 8.73913043478261e-06, + "loss": 0.1582, + "step": 2590 + }, + { + "epoch": 113.0, + "eval_accuracy": 0.7677165354330708, + "eval_loss": 0.9657435417175293, + "eval_runtime": 5.3503, + "eval_samples_per_second": 47.474, + "eval_steps_per_second": 0.748, + "step": 2599 + }, + { + "epoch": 113.04347826086956, + "grad_norm": 16.048084259033203, + "learning_rate": 8.695652173913044e-06, + "loss": 0.1543, + "step": 2600 + }, + { + "epoch": 113.47826086956522, + "grad_norm": 10.532240867614746, + "learning_rate": 8.65217391304348e-06, + "loss": 0.1468, + "step": 2610 + }, + { + "epoch": 113.91304347826087, + "grad_norm": 10.69536018371582, + "learning_rate": 8.608695652173915e-06, + "loss": 0.1291, + "step": 2620 + }, + { + "epoch": 114.0, + "eval_accuracy": 0.7755905511811023, + "eval_loss": 0.9563351273536682, + "eval_runtime": 5.5866, + "eval_samples_per_second": 45.466, + "eval_steps_per_second": 0.716, + "step": 2622 + }, + { + "epoch": 114.34782608695652, + "grad_norm": 14.370439529418945, + "learning_rate": 8.56521739130435e-06, + "loss": 0.1491, + "step": 2630 + }, + { + "epoch": 114.78260869565217, + "grad_norm": 6.434089660644531, + "learning_rate": 8.521739130434783e-06, + "loss": 0.1106, + "step": 2640 + }, + { + "epoch": 115.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.1004494428634644, + "eval_runtime": 5.299, + "eval_samples_per_second": 47.934, + "eval_steps_per_second": 0.755, + "step": 2645 + }, + { + "epoch": 115.21739130434783, + "grad_norm": 16.293176651000977, + "learning_rate": 8.478260869565218e-06, + "loss": 0.1276, + "step": 2650 + }, + { + "epoch": 115.65217391304348, + "grad_norm": 6.88930082321167, + "learning_rate": 8.434782608695653e-06, + "loss": 0.1339, + "step": 2660 + }, + { + "epoch": 116.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.0326673984527588, + "eval_runtime": 5.6971, + "eval_samples_per_second": 44.584, + "eval_steps_per_second": 0.702, + "step": 2668 + }, + { + "epoch": 116.08695652173913, + "grad_norm": 13.512252807617188, + "learning_rate": 8.391304347826089e-06, + "loss": 0.1317, + "step": 2670 + }, + { + "epoch": 116.52173913043478, + "grad_norm": 6.733714580535889, + "learning_rate": 8.347826086956522e-06, + "loss": 0.1209, + "step": 2680 + }, + { + "epoch": 116.95652173913044, + "grad_norm": 15.30413818359375, + "learning_rate": 8.304347826086957e-06, + "loss": 0.1344, + "step": 2690 + }, + { + "epoch": 117.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.0160647630691528, + "eval_runtime": 5.8565, + "eval_samples_per_second": 43.371, + "eval_steps_per_second": 0.683, + "step": 2691 + }, + { + "epoch": 117.3913043478261, + "grad_norm": 15.041736602783203, + "learning_rate": 8.260869565217392e-06, + "loss": 0.1674, + "step": 2700 + }, + { + "epoch": 117.82608695652173, + "grad_norm": 23.318103790283203, + "learning_rate": 8.217391304347827e-06, + "loss": 0.1433, + "step": 2710 + }, + { + "epoch": 118.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 1.0311795473098755, + "eval_runtime": 5.6699, + "eval_samples_per_second": 44.798, + "eval_steps_per_second": 0.705, + "step": 2714 + }, + { + "epoch": 118.26086956521739, + "grad_norm": 9.980913162231445, + "learning_rate": 8.173913043478263e-06, + "loss": 0.1347, + "step": 2720 + }, + { + "epoch": 118.69565217391305, + "grad_norm": 7.0901408195495605, + "learning_rate": 8.130434782608696e-06, + "loss": 0.1271, + "step": 2730 + }, + { + "epoch": 119.0, + "eval_accuracy": 0.7598425196850394, + "eval_loss": 1.0266056060791016, + "eval_runtime": 5.2706, + "eval_samples_per_second": 48.192, + "eval_steps_per_second": 0.759, + "step": 2737 + }, + { + "epoch": 119.1304347826087, + "grad_norm": 43.82113265991211, + "learning_rate": 8.086956521739131e-06, + "loss": 0.1068, + "step": 2740 + }, + { + "epoch": 119.56521739130434, + "grad_norm": 7.058877468109131, + "learning_rate": 8.043478260869566e-06, + "loss": 0.1144, + "step": 2750 + }, + { + "epoch": 120.0, + "grad_norm": 4.748641014099121, + "learning_rate": 8.000000000000001e-06, + "loss": 0.1222, + "step": 2760 + }, + { + "epoch": 120.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 1.0119496583938599, + "eval_runtime": 6.2061, + "eval_samples_per_second": 40.928, + "eval_steps_per_second": 0.645, + "step": 2760 + }, + { + "epoch": 120.43478260869566, + "grad_norm": 15.84010124206543, + "learning_rate": 7.956521739130435e-06, + "loss": 0.1193, + "step": 2770 + }, + { + "epoch": 120.8695652173913, + "grad_norm": 13.664319038391113, + "learning_rate": 7.91304347826087e-06, + "loss": 0.1235, + "step": 2780 + }, + { + "epoch": 121.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.0808361768722534, + "eval_runtime": 5.23, + "eval_samples_per_second": 48.566, + "eval_steps_per_second": 0.765, + "step": 2783 + }, + { + "epoch": 121.30434782608695, + "grad_norm": 12.779178619384766, + "learning_rate": 7.869565217391305e-06, + "loss": 0.1322, + "step": 2790 + }, + { + "epoch": 121.73913043478261, + "grad_norm": 13.491189002990723, + "learning_rate": 7.82608695652174e-06, + "loss": 0.1311, + "step": 2800 + }, + { + "epoch": 122.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.0612245798110962, + "eval_runtime": 5.2527, + "eval_samples_per_second": 48.356, + "eval_steps_per_second": 0.762, + "step": 2806 + }, + { + "epoch": 122.17391304347827, + "grad_norm": 12.711108207702637, + "learning_rate": 7.782608695652174e-06, + "loss": 0.1415, + "step": 2810 + }, + { + "epoch": 122.6086956521739, + "grad_norm": 21.42779541015625, + "learning_rate": 7.739130434782609e-06, + "loss": 0.1219, + "step": 2820 + }, + { + "epoch": 123.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.1412242650985718, + "eval_runtime": 5.1306, + "eval_samples_per_second": 49.507, + "eval_steps_per_second": 0.78, + "step": 2829 + }, + { + "epoch": 123.04347826086956, + "grad_norm": 23.719886779785156, + "learning_rate": 7.695652173913044e-06, + "loss": 0.138, + "step": 2830 + }, + { + "epoch": 123.47826086956522, + "grad_norm": 9.191445350646973, + "learning_rate": 7.652173913043479e-06, + "loss": 0.111, + "step": 2840 + }, + { + "epoch": 123.91304347826087, + "grad_norm": 29.234426498413086, + "learning_rate": 7.608695652173914e-06, + "loss": 0.148, + "step": 2850 + }, + { + "epoch": 124.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.0836260318756104, + "eval_runtime": 5.2645, + "eval_samples_per_second": 48.248, + "eval_steps_per_second": 0.76, + "step": 2852 + }, + { + "epoch": 124.34782608695652, + "grad_norm": 11.18213939666748, + "learning_rate": 7.565217391304348e-06, + "loss": 0.13, + "step": 2860 + }, + { + "epoch": 124.78260869565217, + "grad_norm": 15.413270950317383, + "learning_rate": 7.5217391304347835e-06, + "loss": 0.1076, + "step": 2870 + }, + { + "epoch": 125.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 1.0629363059997559, + "eval_runtime": 5.8955, + "eval_samples_per_second": 43.084, + "eval_steps_per_second": 0.678, + "step": 2875 + }, + { + "epoch": 125.21739130434783, + "grad_norm": 8.161211013793945, + "learning_rate": 7.478260869565218e-06, + "loss": 0.1678, + "step": 2880 + }, + { + "epoch": 125.65217391304348, + "grad_norm": 8.079183578491211, + "learning_rate": 7.434782608695653e-06, + "loss": 0.1306, + "step": 2890 + }, + { + "epoch": 126.0, + "eval_accuracy": 0.7362204724409449, + "eval_loss": 1.0791066884994507, + "eval_runtime": 5.794, + "eval_samples_per_second": 43.839, + "eval_steps_per_second": 0.69, + "step": 2898 + }, + { + "epoch": 126.08695652173913, + "grad_norm": 20.435319900512695, + "learning_rate": 7.391304347826087e-06, + "loss": 0.1227, + "step": 2900 + }, + { + "epoch": 126.52173913043478, + "grad_norm": 5.470503807067871, + "learning_rate": 7.347826086956522e-06, + "loss": 0.1258, + "step": 2910 + }, + { + "epoch": 126.95652173913044, + "grad_norm": 21.71735191345215, + "learning_rate": 7.304347826086957e-06, + "loss": 0.1153, + "step": 2920 + }, + { + "epoch": 127.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.149482250213623, + "eval_runtime": 5.2212, + "eval_samples_per_second": 48.648, + "eval_steps_per_second": 0.766, + "step": 2921 + }, + { + "epoch": 127.3913043478261, + "grad_norm": 7.169867038726807, + "learning_rate": 7.2608695652173925e-06, + "loss": 0.1023, + "step": 2930 + }, + { + "epoch": 127.82608695652173, + "grad_norm": 5.137673377990723, + "learning_rate": 7.217391304347827e-06, + "loss": 0.1239, + "step": 2940 + }, + { + "epoch": 128.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.1446442604064941, + "eval_runtime": 5.8267, + "eval_samples_per_second": 43.592, + "eval_steps_per_second": 0.686, + "step": 2944 + }, + { + "epoch": 128.2608695652174, + "grad_norm": 46.98186492919922, + "learning_rate": 7.173913043478261e-06, + "loss": 0.1256, + "step": 2950 + }, + { + "epoch": 128.69565217391303, + "grad_norm": 18.51282501220703, + "learning_rate": 7.130434782608696e-06, + "loss": 0.1533, + "step": 2960 + }, + { + "epoch": 129.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.0817540884017944, + "eval_runtime": 5.9648, + "eval_samples_per_second": 42.583, + "eval_steps_per_second": 0.671, + "step": 2967 + }, + { + "epoch": 129.1304347826087, + "grad_norm": 30.390338897705078, + "learning_rate": 7.086956521739131e-06, + "loss": 0.1534, + "step": 2970 + }, + { + "epoch": 129.56521739130434, + "grad_norm": 15.933720588684082, + "learning_rate": 7.0434782608695665e-06, + "loss": 0.1542, + "step": 2980 + }, + { + "epoch": 130.0, + "grad_norm": 28.77271270751953, + "learning_rate": 7e-06, + "loss": 0.136, + "step": 2990 + }, + { + "epoch": 130.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.0557951927185059, + "eval_runtime": 5.2305, + "eval_samples_per_second": 48.561, + "eval_steps_per_second": 0.765, + "step": 2990 + }, + { + "epoch": 130.43478260869566, + "grad_norm": 13.821724891662598, + "learning_rate": 6.956521739130435e-06, + "loss": 0.1428, + "step": 3000 + }, + { + "epoch": 130.8695652173913, + "grad_norm": 12.773445129394531, + "learning_rate": 6.91304347826087e-06, + "loss": 0.1189, + "step": 3010 + }, + { + "epoch": 131.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.0423293113708496, + "eval_runtime": 5.2446, + "eval_samples_per_second": 48.431, + "eval_steps_per_second": 0.763, + "step": 3013 + }, + { + "epoch": 131.30434782608697, + "grad_norm": 12.808055877685547, + "learning_rate": 6.869565217391305e-06, + "loss": 0.1204, + "step": 3020 + }, + { + "epoch": 131.7391304347826, + "grad_norm": 12.246822357177734, + "learning_rate": 6.8260869565217395e-06, + "loss": 0.1247, + "step": 3030 + }, + { + "epoch": 132.0, + "eval_accuracy": 0.7637795275590551, + "eval_loss": 1.0581423044204712, + "eval_runtime": 5.6958, + "eval_samples_per_second": 44.594, + "eval_steps_per_second": 0.702, + "step": 3036 + }, + { + "epoch": 132.17391304347825, + "grad_norm": 8.1224946975708, + "learning_rate": 6.782608695652174e-06, + "loss": 0.1259, + "step": 3040 + }, + { + "epoch": 132.6086956521739, + "grad_norm": 9.494956016540527, + "learning_rate": 6.739130434782609e-06, + "loss": 0.1136, + "step": 3050 + }, + { + "epoch": 133.0, + "eval_accuracy": 0.7716535433070866, + "eval_loss": 1.0132337808609009, + "eval_runtime": 5.341, + "eval_samples_per_second": 47.556, + "eval_steps_per_second": 0.749, + "step": 3059 + }, + { + "epoch": 133.04347826086956, + "grad_norm": 6.921084880828857, + "learning_rate": 6.695652173913044e-06, + "loss": 0.1295, + "step": 3060 + }, + { + "epoch": 133.47826086956522, + "grad_norm": 11.8038330078125, + "learning_rate": 6.652173913043479e-06, + "loss": 0.094, + "step": 3070 + }, + { + "epoch": 133.91304347826087, + "grad_norm": 14.180817604064941, + "learning_rate": 6.6086956521739135e-06, + "loss": 0.1492, + "step": 3080 + }, + { + "epoch": 134.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.1127182245254517, + "eval_runtime": 5.2916, + "eval_samples_per_second": 48.0, + "eval_steps_per_second": 0.756, + "step": 3082 + }, + { + "epoch": 134.34782608695653, + "grad_norm": 35.78520202636719, + "learning_rate": 6.565217391304349e-06, + "loss": 0.1522, + "step": 3090 + }, + { + "epoch": 134.7826086956522, + "grad_norm": 16.837764739990234, + "learning_rate": 6.521739130434783e-06, + "loss": 0.1184, + "step": 3100 + }, + { + "epoch": 135.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.1449700593948364, + "eval_runtime": 5.1179, + "eval_samples_per_second": 49.629, + "eval_steps_per_second": 0.782, + "step": 3105 + }, + { + "epoch": 135.2173913043478, + "grad_norm": 18.732372283935547, + "learning_rate": 6.478260869565218e-06, + "loss": 0.1284, + "step": 3110 + }, + { + "epoch": 135.65217391304347, + "grad_norm": 47.60773468017578, + "learning_rate": 6.434782608695652e-06, + "loss": 0.1122, + "step": 3120 + }, + { + "epoch": 136.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.1063224077224731, + "eval_runtime": 5.1054, + "eval_samples_per_second": 49.751, + "eval_steps_per_second": 0.783, + "step": 3128 + }, + { + "epoch": 136.08695652173913, + "grad_norm": 13.677179336547852, + "learning_rate": 6.391304347826087e-06, + "loss": 0.1027, + "step": 3130 + }, + { + "epoch": 136.52173913043478, + "grad_norm": 25.119609832763672, + "learning_rate": 6.3478260869565225e-06, + "loss": 0.1485, + "step": 3140 + }, + { + "epoch": 136.95652173913044, + "grad_norm": 7.572585105895996, + "learning_rate": 6.304347826086958e-06, + "loss": 0.1047, + "step": 3150 + }, + { + "epoch": 137.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.1029216051101685, + "eval_runtime": 5.1837, + "eval_samples_per_second": 48.999, + "eval_steps_per_second": 0.772, + "step": 3151 + }, + { + "epoch": 137.3913043478261, + "grad_norm": 15.767362594604492, + "learning_rate": 6.260869565217392e-06, + "loss": 0.1319, + "step": 3160 + }, + { + "epoch": 137.82608695652175, + "grad_norm": 7.367244243621826, + "learning_rate": 6.217391304347826e-06, + "loss": 0.1285, + "step": 3170 + }, + { + "epoch": 138.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.156273603439331, + "eval_runtime": 6.0904, + "eval_samples_per_second": 41.705, + "eval_steps_per_second": 0.657, + "step": 3174 + }, + { + "epoch": 138.2608695652174, + "grad_norm": 17.1787166595459, + "learning_rate": 6.173913043478261e-06, + "loss": 0.1134, + "step": 3180 + }, + { + "epoch": 138.69565217391303, + "grad_norm": 8.421507835388184, + "learning_rate": 6.1304347826086965e-06, + "loss": 0.1004, + "step": 3190 + }, + { + "epoch": 139.0, + "eval_accuracy": 0.7362204724409449, + "eval_loss": 1.1551874876022339, + "eval_runtime": 5.6544, + "eval_samples_per_second": 44.921, + "eval_steps_per_second": 0.707, + "step": 3197 + }, + { + "epoch": 139.1304347826087, + "grad_norm": 13.920239448547363, + "learning_rate": 6.086956521739132e-06, + "loss": 0.1237, + "step": 3200 + }, + { + "epoch": 139.56521739130434, + "grad_norm": 11.163459777832031, + "learning_rate": 6.043478260869565e-06, + "loss": 0.1278, + "step": 3210 + }, + { + "epoch": 140.0, + "grad_norm": 38.89981460571289, + "learning_rate": 6e-06, + "loss": 0.1285, + "step": 3220 + }, + { + "epoch": 140.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.109745979309082, + "eval_runtime": 5.999, + "eval_samples_per_second": 42.34, + "eval_steps_per_second": 0.667, + "step": 3220 + }, + { + "epoch": 140.43478260869566, + "grad_norm": 7.645209312438965, + "learning_rate": 5.956521739130435e-06, + "loss": 0.1422, + "step": 3230 + }, + { + "epoch": 140.8695652173913, + "grad_norm": 20.615463256835938, + "learning_rate": 5.91304347826087e-06, + "loss": 0.1257, + "step": 3240 + }, + { + "epoch": 141.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.1602002382278442, + "eval_runtime": 6.0238, + "eval_samples_per_second": 42.166, + "eval_steps_per_second": 0.664, + "step": 3243 + }, + { + "epoch": 141.30434782608697, + "grad_norm": 13.762594223022461, + "learning_rate": 5.8695652173913055e-06, + "loss": 0.0992, + "step": 3250 + }, + { + "epoch": 141.7391304347826, + "grad_norm": 5.704482555389404, + "learning_rate": 5.826086956521739e-06, + "loss": 0.1075, + "step": 3260 + }, + { + "epoch": 142.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 1.1911606788635254, + "eval_runtime": 6.0583, + "eval_samples_per_second": 41.926, + "eval_steps_per_second": 0.66, + "step": 3266 + }, + { + "epoch": 142.17391304347825, + "grad_norm": 18.972148895263672, + "learning_rate": 5.782608695652174e-06, + "loss": 0.1112, + "step": 3270 + }, + { + "epoch": 142.6086956521739, + "grad_norm": 21.352266311645508, + "learning_rate": 5.739130434782609e-06, + "loss": 0.1098, + "step": 3280 + }, + { + "epoch": 143.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.1894166469573975, + "eval_runtime": 5.6001, + "eval_samples_per_second": 45.357, + "eval_steps_per_second": 0.714, + "step": 3289 + }, + { + "epoch": 143.04347826086956, + "grad_norm": 12.431015014648438, + "learning_rate": 5.695652173913044e-06, + "loss": 0.0992, + "step": 3290 + }, + { + "epoch": 143.47826086956522, + "grad_norm": 17.39335823059082, + "learning_rate": 5.652173913043479e-06, + "loss": 0.1301, + "step": 3300 + }, + { + "epoch": 143.91304347826087, + "grad_norm": 3.1455869674682617, + "learning_rate": 5.608695652173914e-06, + "loss": 0.1148, + "step": 3310 + }, + { + "epoch": 144.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.155055046081543, + "eval_runtime": 6.0411, + "eval_samples_per_second": 42.045, + "eval_steps_per_second": 0.662, + "step": 3312 + }, + { + "epoch": 144.34782608695653, + "grad_norm": 19.077762603759766, + "learning_rate": 5.565217391304348e-06, + "loss": 0.1051, + "step": 3320 + }, + { + "epoch": 144.7826086956522, + "grad_norm": 22.914405822753906, + "learning_rate": 5.521739130434783e-06, + "loss": 0.1489, + "step": 3330 + }, + { + "epoch": 145.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.137885332107544, + "eval_runtime": 5.3417, + "eval_samples_per_second": 47.55, + "eval_steps_per_second": 0.749, + "step": 3335 + }, + { + "epoch": 145.2173913043478, + "grad_norm": 33.728397369384766, + "learning_rate": 5.478260869565217e-06, + "loss": 0.1242, + "step": 3340 + }, + { + "epoch": 145.65217391304347, + "grad_norm": 22.441125869750977, + "learning_rate": 5.4347826086956525e-06, + "loss": 0.1461, + "step": 3350 + }, + { + "epoch": 146.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.1726444959640503, + "eval_runtime": 5.1056, + "eval_samples_per_second": 49.749, + "eval_steps_per_second": 0.783, + "step": 3358 + }, + { + "epoch": 146.08695652173913, + "grad_norm": 23.851354598999023, + "learning_rate": 5.391304347826088e-06, + "loss": 0.1157, + "step": 3360 + }, + { + "epoch": 146.52173913043478, + "grad_norm": 11.18212604522705, + "learning_rate": 5.347826086956523e-06, + "loss": 0.1238, + "step": 3370 + }, + { + "epoch": 146.95652173913044, + "grad_norm": 10.293829917907715, + "learning_rate": 5.304347826086957e-06, + "loss": 0.1171, + "step": 3380 + }, + { + "epoch": 147.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.1190757751464844, + "eval_runtime": 5.1299, + "eval_samples_per_second": 49.513, + "eval_steps_per_second": 0.78, + "step": 3381 + }, + { + "epoch": 147.3913043478261, + "grad_norm": 12.49338436126709, + "learning_rate": 5.260869565217391e-06, + "loss": 0.1363, + "step": 3390 + }, + { + "epoch": 147.82608695652175, + "grad_norm": 16.56803321838379, + "learning_rate": 5.2173913043478265e-06, + "loss": 0.1262, + "step": 3400 + }, + { + "epoch": 148.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.1661558151245117, + "eval_runtime": 5.1432, + "eval_samples_per_second": 49.386, + "eval_steps_per_second": 0.778, + "step": 3404 + }, + { + "epoch": 148.2608695652174, + "grad_norm": 13.47645092010498, + "learning_rate": 5.173913043478262e-06, + "loss": 0.1236, + "step": 3410 + }, + { + "epoch": 148.69565217391303, + "grad_norm": 6.461868762969971, + "learning_rate": 5.130434782608697e-06, + "loss": 0.1137, + "step": 3420 + }, + { + "epoch": 149.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.1282668113708496, + "eval_runtime": 5.2173, + "eval_samples_per_second": 48.684, + "eval_steps_per_second": 0.767, + "step": 3427 + }, + { + "epoch": 149.1304347826087, + "grad_norm": 9.386457443237305, + "learning_rate": 5.08695652173913e-06, + "loss": 0.0944, + "step": 3430 + }, + { + "epoch": 149.56521739130434, + "grad_norm": 17.175273895263672, + "learning_rate": 5.043478260869565e-06, + "loss": 0.1179, + "step": 3440 + }, + { + "epoch": 150.0, + "grad_norm": 3.21197247505188, + "learning_rate": 5e-06, + "loss": 0.1118, + "step": 3450 + }, + { + "epoch": 150.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.1388078927993774, + "eval_runtime": 5.2199, + "eval_samples_per_second": 48.66, + "eval_steps_per_second": 0.766, + "step": 3450 + }, + { + "epoch": 150.43478260869566, + "grad_norm": 13.216156005859375, + "learning_rate": 4.9565217391304355e-06, + "loss": 0.132, + "step": 3460 + }, + { + "epoch": 150.8695652173913, + "grad_norm": 17.5484561920166, + "learning_rate": 4.91304347826087e-06, + "loss": 0.1169, + "step": 3470 + }, + { + "epoch": 151.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.162711501121521, + "eval_runtime": 6.0191, + "eval_samples_per_second": 42.199, + "eval_steps_per_second": 0.665, + "step": 3473 + }, + { + "epoch": 151.30434782608697, + "grad_norm": 12.96456527709961, + "learning_rate": 4.869565217391305e-06, + "loss": 0.0991, + "step": 3480 + }, + { + "epoch": 151.7391304347826, + "grad_norm": 16.27593994140625, + "learning_rate": 4.826086956521739e-06, + "loss": 0.1021, + "step": 3490 + }, + { + "epoch": 152.0, + "eval_accuracy": 0.7322834645669292, + "eval_loss": 1.182125210762024, + "eval_runtime": 6.074, + "eval_samples_per_second": 41.817, + "eval_steps_per_second": 0.659, + "step": 3496 + }, + { + "epoch": 152.17391304347825, + "grad_norm": 17.580163955688477, + "learning_rate": 4.782608695652174e-06, + "loss": 0.1196, + "step": 3500 + }, + { + "epoch": 152.6086956521739, + "grad_norm": 16.174192428588867, + "learning_rate": 4.739130434782609e-06, + "loss": 0.1392, + "step": 3510 + }, + { + "epoch": 153.0, + "eval_accuracy": 0.7322834645669292, + "eval_loss": 1.1671814918518066, + "eval_runtime": 5.2176, + "eval_samples_per_second": 48.681, + "eval_steps_per_second": 0.767, + "step": 3519 + }, + { + "epoch": 153.04347826086956, + "grad_norm": 34.79978561401367, + "learning_rate": 4.695652173913044e-06, + "loss": 0.1162, + "step": 3520 + }, + { + "epoch": 153.47826086956522, + "grad_norm": 17.405305862426758, + "learning_rate": 4.652173913043478e-06, + "loss": 0.1022, + "step": 3530 + }, + { + "epoch": 153.91304347826087, + "grad_norm": 10.909713745117188, + "learning_rate": 4.608695652173913e-06, + "loss": 0.1111, + "step": 3540 + }, + { + "epoch": 154.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.2136441469192505, + "eval_runtime": 5.568, + "eval_samples_per_second": 45.618, + "eval_steps_per_second": 0.718, + "step": 3542 + }, + { + "epoch": 154.34782608695653, + "grad_norm": 21.353759765625, + "learning_rate": 4.565217391304348e-06, + "loss": 0.143, + "step": 3550 + }, + { + "epoch": 154.7826086956522, + "grad_norm": 17.216047286987305, + "learning_rate": 4.5217391304347826e-06, + "loss": 0.1298, + "step": 3560 + }, + { + "epoch": 155.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.1966124773025513, + "eval_runtime": 6.0928, + "eval_samples_per_second": 41.689, + "eval_steps_per_second": 0.657, + "step": 3565 + }, + { + "epoch": 155.2173913043478, + "grad_norm": 8.084007263183594, + "learning_rate": 4.478260869565218e-06, + "loss": 0.0944, + "step": 3570 + }, + { + "epoch": 155.65217391304347, + "grad_norm": 13.08774471282959, + "learning_rate": 4.434782608695653e-06, + "loss": 0.1114, + "step": 3580 + }, + { + "epoch": 156.0, + "eval_accuracy": 0.7362204724409449, + "eval_loss": 1.138235092163086, + "eval_runtime": 5.2162, + "eval_samples_per_second": 48.694, + "eval_steps_per_second": 0.767, + "step": 3588 + }, + { + "epoch": 156.08695652173913, + "grad_norm": 9.64503002166748, + "learning_rate": 4.391304347826087e-06, + "loss": 0.1216, + "step": 3590 + }, + { + "epoch": 156.52173913043478, + "grad_norm": 20.011825561523438, + "learning_rate": 4.347826086956522e-06, + "loss": 0.1352, + "step": 3600 + }, + { + "epoch": 156.95652173913044, + "grad_norm": 9.31452751159668, + "learning_rate": 4.304347826086957e-06, + "loss": 0.09, + "step": 3610 + }, + { + "epoch": 157.0, + "eval_accuracy": 0.7322834645669292, + "eval_loss": 1.145975947380066, + "eval_runtime": 6.2926, + "eval_samples_per_second": 40.365, + "eval_steps_per_second": 0.636, + "step": 3611 + }, + { + "epoch": 157.3913043478261, + "grad_norm": 22.55306625366211, + "learning_rate": 4.260869565217392e-06, + "loss": 0.0952, + "step": 3620 + }, + { + "epoch": 157.82608695652175, + "grad_norm": 11.786699295043945, + "learning_rate": 4.217391304347827e-06, + "loss": 0.1294, + "step": 3630 + }, + { + "epoch": 158.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.1612186431884766, + "eval_runtime": 5.5409, + "eval_samples_per_second": 45.841, + "eval_steps_per_second": 0.722, + "step": 3634 + }, + { + "epoch": 158.2608695652174, + "grad_norm": 10.745357513427734, + "learning_rate": 4.173913043478261e-06, + "loss": 0.0985, + "step": 3640 + }, + { + "epoch": 158.69565217391303, + "grad_norm": 12.405003547668457, + "learning_rate": 4.130434782608696e-06, + "loss": 0.1186, + "step": 3650 + }, + { + "epoch": 159.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.2204416990280151, + "eval_runtime": 5.9711, + "eval_samples_per_second": 42.538, + "eval_steps_per_second": 0.67, + "step": 3657 + }, + { + "epoch": 159.1304347826087, + "grad_norm": 20.51667022705078, + "learning_rate": 4.086956521739131e-06, + "loss": 0.1335, + "step": 3660 + }, + { + "epoch": 159.56521739130434, + "grad_norm": 12.348188400268555, + "learning_rate": 4.0434782608695655e-06, + "loss": 0.1106, + "step": 3670 + }, + { + "epoch": 160.0, + "grad_norm": 24.83527183532715, + "learning_rate": 4.000000000000001e-06, + "loss": 0.1096, + "step": 3680 + }, + { + "epoch": 160.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2095911502838135, + "eval_runtime": 6.1017, + "eval_samples_per_second": 41.628, + "eval_steps_per_second": 0.656, + "step": 3680 + }, + { + "epoch": 160.43478260869566, + "grad_norm": 21.34354019165039, + "learning_rate": 3.956521739130435e-06, + "loss": 0.0921, + "step": 3690 + }, + { + "epoch": 160.8695652173913, + "grad_norm": 9.070474624633789, + "learning_rate": 3.91304347826087e-06, + "loss": 0.1107, + "step": 3700 + }, + { + "epoch": 161.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.182215690612793, + "eval_runtime": 6.0899, + "eval_samples_per_second": 41.709, + "eval_steps_per_second": 0.657, + "step": 3703 + }, + { + "epoch": 161.30434782608697, + "grad_norm": 17.007827758789062, + "learning_rate": 3.869565217391304e-06, + "loss": 0.1148, + "step": 3710 + }, + { + "epoch": 161.7391304347826, + "grad_norm": 15.50957202911377, + "learning_rate": 3.8260869565217395e-06, + "loss": 0.1094, + "step": 3720 + }, + { + "epoch": 162.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.1907768249511719, + "eval_runtime": 6.0337, + "eval_samples_per_second": 42.097, + "eval_steps_per_second": 0.663, + "step": 3726 + }, + { + "epoch": 162.17391304347825, + "grad_norm": 22.703414916992188, + "learning_rate": 3.782608695652174e-06, + "loss": 0.1123, + "step": 3730 + }, + { + "epoch": 162.6086956521739, + "grad_norm": 11.196767807006836, + "learning_rate": 3.739130434782609e-06, + "loss": 0.1112, + "step": 3740 + }, + { + "epoch": 163.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.164740800857544, + "eval_runtime": 5.9944, + "eval_samples_per_second": 42.373, + "eval_steps_per_second": 0.667, + "step": 3749 + }, + { + "epoch": 163.04347826086956, + "grad_norm": 8.430397987365723, + "learning_rate": 3.6956521739130436e-06, + "loss": 0.1113, + "step": 3750 + }, + { + "epoch": 163.47826086956522, + "grad_norm": 4.709465980529785, + "learning_rate": 3.6521739130434787e-06, + "loss": 0.1078, + "step": 3760 + }, + { + "epoch": 163.91304347826087, + "grad_norm": 13.146780014038086, + "learning_rate": 3.6086956521739134e-06, + "loss": 0.1042, + "step": 3770 + }, + { + "epoch": 164.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.252306342124939, + "eval_runtime": 5.2297, + "eval_samples_per_second": 48.569, + "eval_steps_per_second": 0.765, + "step": 3772 + }, + { + "epoch": 164.34782608695653, + "grad_norm": 10.450764656066895, + "learning_rate": 3.565217391304348e-06, + "loss": 0.1549, + "step": 3780 + }, + { + "epoch": 164.7826086956522, + "grad_norm": 3.6140904426574707, + "learning_rate": 3.5217391304347832e-06, + "loss": 0.0993, + "step": 3790 + }, + { + "epoch": 165.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.2039833068847656, + "eval_runtime": 6.3786, + "eval_samples_per_second": 39.821, + "eval_steps_per_second": 0.627, + "step": 3795 + }, + { + "epoch": 165.2173913043478, + "grad_norm": 12.08646297454834, + "learning_rate": 3.4782608695652175e-06, + "loss": 0.1, + "step": 3800 + }, + { + "epoch": 165.65217391304347, + "grad_norm": 19.647462844848633, + "learning_rate": 3.4347826086956526e-06, + "loss": 0.105, + "step": 3810 + }, + { + "epoch": 166.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.2296301126480103, + "eval_runtime": 6.2193, + "eval_samples_per_second": 40.84, + "eval_steps_per_second": 0.643, + "step": 3818 + }, + { + "epoch": 166.08695652173913, + "grad_norm": 14.596138000488281, + "learning_rate": 3.391304347826087e-06, + "loss": 0.0947, + "step": 3820 + }, + { + "epoch": 166.52173913043478, + "grad_norm": 12.743565559387207, + "learning_rate": 3.347826086956522e-06, + "loss": 0.1144, + "step": 3830 + }, + { + "epoch": 166.95652173913044, + "grad_norm": 2.257753610610962, + "learning_rate": 3.3043478260869567e-06, + "loss": 0.1071, + "step": 3840 + }, + { + "epoch": 167.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.286328673362732, + "eval_runtime": 6.2909, + "eval_samples_per_second": 40.376, + "eval_steps_per_second": 0.636, + "step": 3841 + }, + { + "epoch": 167.3913043478261, + "grad_norm": 9.273666381835938, + "learning_rate": 3.2608695652173914e-06, + "loss": 0.11, + "step": 3850 + }, + { + "epoch": 167.82608695652175, + "grad_norm": 9.474180221557617, + "learning_rate": 3.217391304347826e-06, + "loss": 0.108, + "step": 3860 + }, + { + "epoch": 168.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2372475862503052, + "eval_runtime": 6.1145, + "eval_samples_per_second": 41.541, + "eval_steps_per_second": 0.654, + "step": 3864 + }, + { + "epoch": 168.2608695652174, + "grad_norm": 9.455063819885254, + "learning_rate": 3.1739130434782613e-06, + "loss": 0.0999, + "step": 3870 + }, + { + "epoch": 168.69565217391303, + "grad_norm": 15.079169273376465, + "learning_rate": 3.130434782608696e-06, + "loss": 0.1076, + "step": 3880 + }, + { + "epoch": 169.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.1871860027313232, + "eval_runtime": 5.0604, + "eval_samples_per_second": 50.193, + "eval_steps_per_second": 0.79, + "step": 3887 + }, + { + "epoch": 169.1304347826087, + "grad_norm": 12.766210556030273, + "learning_rate": 3.0869565217391307e-06, + "loss": 0.1003, + "step": 3890 + }, + { + "epoch": 169.56521739130434, + "grad_norm": 7.451639175415039, + "learning_rate": 3.043478260869566e-06, + "loss": 0.1141, + "step": 3900 + }, + { + "epoch": 170.0, + "grad_norm": 23.210697174072266, + "learning_rate": 3e-06, + "loss": 0.1107, + "step": 3910 + }, + { + "epoch": 170.0, + "eval_accuracy": 0.7322834645669292, + "eval_loss": 1.2354222536087036, + "eval_runtime": 6.0785, + "eval_samples_per_second": 41.787, + "eval_steps_per_second": 0.658, + "step": 3910 + }, + { + "epoch": 170.43478260869566, + "grad_norm": 13.231768608093262, + "learning_rate": 2.956521739130435e-06, + "loss": 0.1264, + "step": 3920 + }, + { + "epoch": 170.8695652173913, + "grad_norm": 8.206528663635254, + "learning_rate": 2.9130434782608695e-06, + "loss": 0.1012, + "step": 3930 + }, + { + "epoch": 171.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2104681730270386, + "eval_runtime": 6.0246, + "eval_samples_per_second": 42.161, + "eval_steps_per_second": 0.664, + "step": 3933 + }, + { + "epoch": 171.30434782608697, + "grad_norm": 5.853540420532227, + "learning_rate": 2.8695652173913046e-06, + "loss": 0.0994, + "step": 3940 + }, + { + "epoch": 171.7391304347826, + "grad_norm": 23.807804107666016, + "learning_rate": 2.8260869565217393e-06, + "loss": 0.0918, + "step": 3950 + }, + { + "epoch": 172.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2026124000549316, + "eval_runtime": 6.0268, + "eval_samples_per_second": 42.145, + "eval_steps_per_second": 0.664, + "step": 3956 + }, + { + "epoch": 172.17391304347825, + "grad_norm": 21.178815841674805, + "learning_rate": 2.782608695652174e-06, + "loss": 0.1558, + "step": 3960 + }, + { + "epoch": 172.6086956521739, + "grad_norm": 16.011613845825195, + "learning_rate": 2.7391304347826087e-06, + "loss": 0.1043, + "step": 3970 + }, + { + "epoch": 173.0, + "eval_accuracy": 0.7559055118110236, + "eval_loss": 1.2925167083740234, + "eval_runtime": 6.0458, + "eval_samples_per_second": 42.012, + "eval_steps_per_second": 0.662, + "step": 3979 + }, + { + "epoch": 173.04347826086956, + "grad_norm": 11.591164588928223, + "learning_rate": 2.695652173913044e-06, + "loss": 0.1244, + "step": 3980 + }, + { + "epoch": 173.47826086956522, + "grad_norm": 4.560230255126953, + "learning_rate": 2.6521739130434785e-06, + "loss": 0.1179, + "step": 3990 + }, + { + "epoch": 173.91304347826087, + "grad_norm": 4.175049304962158, + "learning_rate": 2.6086956521739132e-06, + "loss": 0.1035, + "step": 4000 + }, + { + "epoch": 174.0, + "eval_accuracy": 0.7401574803149606, + "eval_loss": 1.2313941717147827, + "eval_runtime": 5.123, + "eval_samples_per_second": 49.58, + "eval_steps_per_second": 0.781, + "step": 4002 + }, + { + "epoch": 174.34782608695653, + "grad_norm": 23.1351375579834, + "learning_rate": 2.5652173913043484e-06, + "loss": 0.1087, + "step": 4010 + }, + { + "epoch": 174.7826086956522, + "grad_norm": 16.3070068359375, + "learning_rate": 2.5217391304347826e-06, + "loss": 0.1101, + "step": 4020 + }, + { + "epoch": 175.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.194298267364502, + "eval_runtime": 5.4034, + "eval_samples_per_second": 47.008, + "eval_steps_per_second": 0.74, + "step": 4025 + }, + { + "epoch": 175.2173913043478, + "grad_norm": 24.940147399902344, + "learning_rate": 2.4782608695652178e-06, + "loss": 0.1229, + "step": 4030 + }, + { + "epoch": 175.65217391304347, + "grad_norm": 12.233097076416016, + "learning_rate": 2.4347826086956525e-06, + "loss": 0.1084, + "step": 4040 + }, + { + "epoch": 176.0, + "eval_accuracy": 0.7362204724409449, + "eval_loss": 1.2069385051727295, + "eval_runtime": 5.5007, + "eval_samples_per_second": 46.176, + "eval_steps_per_second": 0.727, + "step": 4048 + }, + { + "epoch": 176.08695652173913, + "grad_norm": 2.12101149559021, + "learning_rate": 2.391304347826087e-06, + "loss": 0.1072, + "step": 4050 + }, + { + "epoch": 176.52173913043478, + "grad_norm": 6.768868446350098, + "learning_rate": 2.347826086956522e-06, + "loss": 0.1174, + "step": 4060 + }, + { + "epoch": 176.95652173913044, + "grad_norm": 15.918899536132812, + "learning_rate": 2.3043478260869566e-06, + "loss": 0.1247, + "step": 4070 + }, + { + "epoch": 177.0, + "eval_accuracy": 0.7519685039370079, + "eval_loss": 1.2303253412246704, + "eval_runtime": 5.7, + "eval_samples_per_second": 44.561, + "eval_steps_per_second": 0.702, + "step": 4071 + }, + { + "epoch": 177.3913043478261, + "grad_norm": 19.0693416595459, + "learning_rate": 2.2608695652173913e-06, + "loss": 0.1032, + "step": 4080 + }, + { + "epoch": 177.82608695652175, + "grad_norm": 21.971101760864258, + "learning_rate": 2.2173913043478264e-06, + "loss": 0.1278, + "step": 4090 + }, + { + "epoch": 178.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.2118239402770996, + "eval_runtime": 5.8876, + "eval_samples_per_second": 43.142, + "eval_steps_per_second": 0.679, + "step": 4094 + }, + { + "epoch": 178.2608695652174, + "grad_norm": 9.593711853027344, + "learning_rate": 2.173913043478261e-06, + "loss": 0.1073, + "step": 4100 + }, + { + "epoch": 178.69565217391303, + "grad_norm": 17.482452392578125, + "learning_rate": 2.130434782608696e-06, + "loss": 0.1117, + "step": 4110 + }, + { + "epoch": 179.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.2212954759597778, + "eval_runtime": 6.0371, + "eval_samples_per_second": 42.073, + "eval_steps_per_second": 0.663, + "step": 4117 + }, + { + "epoch": 179.1304347826087, + "grad_norm": 11.529203414916992, + "learning_rate": 2.0869565217391305e-06, + "loss": 0.0907, + "step": 4120 + }, + { + "epoch": 179.56521739130434, + "grad_norm": 14.801724433898926, + "learning_rate": 2.0434782608695656e-06, + "loss": 0.1028, + "step": 4130 + }, + { + "epoch": 180.0, + "grad_norm": 12.524520874023438, + "learning_rate": 2.0000000000000003e-06, + "loss": 0.1123, + "step": 4140 + }, + { + "epoch": 180.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.2403359413146973, + "eval_runtime": 5.0925, + "eval_samples_per_second": 49.877, + "eval_steps_per_second": 0.785, + "step": 4140 + }, + { + "epoch": 180.43478260869566, + "grad_norm": 16.31502914428711, + "learning_rate": 1.956521739130435e-06, + "loss": 0.1072, + "step": 4150 + }, + { + "epoch": 180.8695652173913, + "grad_norm": 10.127395629882812, + "learning_rate": 1.9130434782608697e-06, + "loss": 0.0918, + "step": 4160 + }, + { + "epoch": 181.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.1987248659133911, + "eval_runtime": 6.0905, + "eval_samples_per_second": 41.705, + "eval_steps_per_second": 0.657, + "step": 4163 + }, + { + "epoch": 181.30434782608697, + "grad_norm": 9.865519523620605, + "learning_rate": 1.8695652173913044e-06, + "loss": 0.0797, + "step": 4170 + }, + { + "epoch": 181.7391304347826, + "grad_norm": 13.656352043151855, + "learning_rate": 1.8260869565217394e-06, + "loss": 0.0827, + "step": 4180 + }, + { + "epoch": 182.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2357696294784546, + "eval_runtime": 6.0801, + "eval_samples_per_second": 41.776, + "eval_steps_per_second": 0.658, + "step": 4186 + }, + { + "epoch": 182.17391304347825, + "grad_norm": 5.673104763031006, + "learning_rate": 1.782608695652174e-06, + "loss": 0.0948, + "step": 4190 + }, + { + "epoch": 182.6086956521739, + "grad_norm": 4.035088539123535, + "learning_rate": 1.7391304347826088e-06, + "loss": 0.0814, + "step": 4200 + }, + { + "epoch": 183.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.260762333869934, + "eval_runtime": 5.5795, + "eval_samples_per_second": 45.523, + "eval_steps_per_second": 0.717, + "step": 4209 + }, + { + "epoch": 183.04347826086956, + "grad_norm": 23.201988220214844, + "learning_rate": 1.6956521739130435e-06, + "loss": 0.1265, + "step": 4210 + }, + { + "epoch": 183.47826086956522, + "grad_norm": 16.737319946289062, + "learning_rate": 1.6521739130434784e-06, + "loss": 0.108, + "step": 4220 + }, + { + "epoch": 183.91304347826087, + "grad_norm": 10.299909591674805, + "learning_rate": 1.608695652173913e-06, + "loss": 0.0897, + "step": 4230 + }, + { + "epoch": 184.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2369588613510132, + "eval_runtime": 5.5508, + "eval_samples_per_second": 45.759, + "eval_steps_per_second": 0.721, + "step": 4232 + }, + { + "epoch": 184.34782608695653, + "grad_norm": 7.6501641273498535, + "learning_rate": 1.565217391304348e-06, + "loss": 0.0951, + "step": 4240 + }, + { + "epoch": 184.7826086956522, + "grad_norm": 12.67705249786377, + "learning_rate": 1.521739130434783e-06, + "loss": 0.1321, + "step": 4250 + }, + { + "epoch": 185.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.231702446937561, + "eval_runtime": 5.603, + "eval_samples_per_second": 45.333, + "eval_steps_per_second": 0.714, + "step": 4255 + }, + { + "epoch": 185.2173913043478, + "grad_norm": 13.189390182495117, + "learning_rate": 1.4782608695652176e-06, + "loss": 0.1084, + "step": 4260 + }, + { + "epoch": 185.65217391304347, + "grad_norm": 14.240042686462402, + "learning_rate": 1.4347826086956523e-06, + "loss": 0.1194, + "step": 4270 + }, + { + "epoch": 186.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.228926658630371, + "eval_runtime": 5.7824, + "eval_samples_per_second": 43.927, + "eval_steps_per_second": 0.692, + "step": 4278 + }, + { + "epoch": 186.08695652173913, + "grad_norm": 12.107095718383789, + "learning_rate": 1.391304347826087e-06, + "loss": 0.104, + "step": 4280 + }, + { + "epoch": 186.52173913043478, + "grad_norm": 11.538783073425293, + "learning_rate": 1.347826086956522e-06, + "loss": 0.1249, + "step": 4290 + }, + { + "epoch": 186.95652173913044, + "grad_norm": 12.4583740234375, + "learning_rate": 1.3043478260869566e-06, + "loss": 0.1154, + "step": 4300 + }, + { + "epoch": 187.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.1963870525360107, + "eval_runtime": 5.0691, + "eval_samples_per_second": 50.107, + "eval_steps_per_second": 0.789, + "step": 4301 + }, + { + "epoch": 187.3913043478261, + "grad_norm": 9.538721084594727, + "learning_rate": 1.2608695652173913e-06, + "loss": 0.1291, + "step": 4310 + }, + { + "epoch": 187.82608695652175, + "grad_norm": 12.623342514038086, + "learning_rate": 1.2173913043478262e-06, + "loss": 0.0964, + "step": 4320 + }, + { + "epoch": 188.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.200947642326355, + "eval_runtime": 6.199, + "eval_samples_per_second": 40.975, + "eval_steps_per_second": 0.645, + "step": 4324 + }, + { + "epoch": 188.2608695652174, + "grad_norm": 12.05130386352539, + "learning_rate": 1.173913043478261e-06, + "loss": 0.0965, + "step": 4330 + }, + { + "epoch": 188.69565217391303, + "grad_norm": 9.74976921081543, + "learning_rate": 1.1304347826086956e-06, + "loss": 0.0903, + "step": 4340 + }, + { + "epoch": 189.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.212328314781189, + "eval_runtime": 6.2152, + "eval_samples_per_second": 40.868, + "eval_steps_per_second": 0.644, + "step": 4347 + }, + { + "epoch": 189.1304347826087, + "grad_norm": 23.216026306152344, + "learning_rate": 1.0869565217391306e-06, + "loss": 0.114, + "step": 4350 + }, + { + "epoch": 189.56521739130434, + "grad_norm": 9.926918029785156, + "learning_rate": 1.0434782608695653e-06, + "loss": 0.0896, + "step": 4360 + }, + { + "epoch": 190.0, + "grad_norm": 21.126604080200195, + "learning_rate": 1.0000000000000002e-06, + "loss": 0.1174, + "step": 4370 + }, + { + "epoch": 190.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.233533263206482, + "eval_runtime": 6.2079, + "eval_samples_per_second": 40.916, + "eval_steps_per_second": 0.644, + "step": 4370 + }, + { + "epoch": 190.43478260869566, + "grad_norm": 24.496295928955078, + "learning_rate": 9.565217391304349e-07, + "loss": 0.1433, + "step": 4380 + }, + { + "epoch": 190.8695652173913, + "grad_norm": 10.999076843261719, + "learning_rate": 9.130434782608697e-07, + "loss": 0.0846, + "step": 4390 + }, + { + "epoch": 191.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2399306297302246, + "eval_runtime": 5.1624, + "eval_samples_per_second": 49.202, + "eval_steps_per_second": 0.775, + "step": 4393 + }, + { + "epoch": 191.30434782608697, + "grad_norm": 16.923410415649414, + "learning_rate": 8.695652173913044e-07, + "loss": 0.0901, + "step": 4400 + }, + { + "epoch": 191.7391304347826, + "grad_norm": 10.834136962890625, + "learning_rate": 8.260869565217392e-07, + "loss": 0.1073, + "step": 4410 + }, + { + "epoch": 192.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.243245244026184, + "eval_runtime": 5.0755, + "eval_samples_per_second": 50.044, + "eval_steps_per_second": 0.788, + "step": 4416 + }, + { + "epoch": 192.17391304347825, + "grad_norm": 9.724759101867676, + "learning_rate": 7.82608695652174e-07, + "loss": 0.126, + "step": 4420 + }, + { + "epoch": 192.6086956521739, + "grad_norm": 6.699430465698242, + "learning_rate": 7.391304347826088e-07, + "loss": 0.0892, + "step": 4430 + }, + { + "epoch": 193.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.2603920698165894, + "eval_runtime": 5.3314, + "eval_samples_per_second": 47.643, + "eval_steps_per_second": 0.75, + "step": 4439 + }, + { + "epoch": 193.04347826086956, + "grad_norm": 14.250825881958008, + "learning_rate": 6.956521739130435e-07, + "loss": 0.1211, + "step": 4440 + }, + { + "epoch": 193.47826086956522, + "grad_norm": 9.508411407470703, + "learning_rate": 6.521739130434783e-07, + "loss": 0.0994, + "step": 4450 + }, + { + "epoch": 193.91304347826087, + "grad_norm": 13.035717010498047, + "learning_rate": 6.086956521739131e-07, + "loss": 0.1158, + "step": 4460 + }, + { + "epoch": 194.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.2473300695419312, + "eval_runtime": 5.0663, + "eval_samples_per_second": 50.135, + "eval_steps_per_second": 0.79, + "step": 4462 + }, + { + "epoch": 194.34782608695653, + "grad_norm": 15.420454978942871, + "learning_rate": 5.652173913043478e-07, + "loss": 0.1159, + "step": 4470 + }, + { + "epoch": 194.7826086956522, + "grad_norm": 26.569854736328125, + "learning_rate": 5.217391304347826e-07, + "loss": 0.1153, + "step": 4480 + }, + { + "epoch": 195.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2267494201660156, + "eval_runtime": 7.2318, + "eval_samples_per_second": 35.123, + "eval_steps_per_second": 0.553, + "step": 4485 + }, + { + "epoch": 195.2173913043478, + "grad_norm": 22.089872360229492, + "learning_rate": 4.782608695652174e-07, + "loss": 0.1009, + "step": 4490 + }, + { + "epoch": 195.65217391304347, + "grad_norm": 18.216550827026367, + "learning_rate": 4.347826086956522e-07, + "loss": 0.1208, + "step": 4500 + }, + { + "epoch": 196.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2177777290344238, + "eval_runtime": 6.0473, + "eval_samples_per_second": 42.002, + "eval_steps_per_second": 0.661, + "step": 4508 + }, + { + "epoch": 196.08695652173913, + "grad_norm": 8.497892379760742, + "learning_rate": 3.91304347826087e-07, + "loss": 0.0903, + "step": 4510 + }, + { + "epoch": 196.52173913043478, + "grad_norm": 8.363734245300293, + "learning_rate": 3.4782608695652175e-07, + "loss": 0.0976, + "step": 4520 + }, + { + "epoch": 196.95652173913044, + "grad_norm": 11.241954803466797, + "learning_rate": 3.0434782608695656e-07, + "loss": 0.083, + "step": 4530 + }, + { + "epoch": 197.0, + "eval_accuracy": 0.7480314960629921, + "eval_loss": 1.2145416736602783, + "eval_runtime": 5.0766, + "eval_samples_per_second": 50.034, + "eval_steps_per_second": 0.788, + "step": 4531 + }, + { + "epoch": 197.3913043478261, + "grad_norm": 5.664416313171387, + "learning_rate": 2.608695652173913e-07, + "loss": 0.0773, + "step": 4540 + }, + { + "epoch": 197.82608695652175, + "grad_norm": 6.778021335601807, + "learning_rate": 2.173913043478261e-07, + "loss": 0.1331, + "step": 4550 + }, + { + "epoch": 198.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2214672565460205, + "eval_runtime": 5.8006, + "eval_samples_per_second": 43.789, + "eval_steps_per_second": 0.69, + "step": 4554 + }, + { + "epoch": 198.2608695652174, + "grad_norm": 19.4536075592041, + "learning_rate": 1.7391304347826088e-07, + "loss": 0.1095, + "step": 4560 + }, + { + "epoch": 198.69565217391303, + "grad_norm": 11.348213195800781, + "learning_rate": 1.3043478260869566e-07, + "loss": 0.0943, + "step": 4570 + }, + { + "epoch": 199.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2238408327102661, + "eval_runtime": 5.0996, + "eval_samples_per_second": 49.808, + "eval_steps_per_second": 0.784, + "step": 4577 + }, + { + "epoch": 199.1304347826087, + "grad_norm": 17.247846603393555, + "learning_rate": 8.695652173913044e-08, + "loss": 0.1049, + "step": 4580 + }, + { + "epoch": 199.56521739130434, + "grad_norm": 35.16756820678711, + "learning_rate": 4.347826086956522e-08, + "loss": 0.1164, + "step": 4590 + }, + { + "epoch": 200.0, + "grad_norm": 3.6230416297912598, + "learning_rate": 0.0, + "loss": 0.0926, + "step": 4600 + }, + { + "epoch": 200.0, + "eval_accuracy": 0.7440944881889764, + "eval_loss": 1.2236244678497314, + "eval_runtime": 6.0673, + "eval_samples_per_second": 41.864, + "eval_steps_per_second": 0.659, + "step": 4600 + }, + { + "epoch": 200.0, + "step": 4600, + "total_flos": 7.223651244601344e+18, + "train_loss": 0.17802202463150024, + "train_runtime": 11399.934, + "train_samples_per_second": 25.176, + "train_steps_per_second": 0.404 + } + ], + "logging_steps": 10, + "max_steps": 4600, + "num_input_tokens_seen": 0, + "num_train_epochs": 200, + "save_steps": 500, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 7.223651244601344e+18, + "train_batch_size": 64, + "trial_name": null, + "trial_params": null +}