Edit model card

clip-roberta-finetuned

This model is a fine-tuned version of ./clip-roberta on the davanstrien/manuscript_noisy_labels_iiif dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.9841 0.07 500 3.4112
2.72 0.15 1000 3.3430
2.6319 0.22 1500 3.2295
2.5781 0.29 2000 3.1645
2.5339 0.36 2500 3.1226
2.503 0.44 3000 3.0856
2.4581 0.51 3500 3.0639
2.4494 0.58 4000 3.0415
2.4275 0.65 4500 3.0245
2.3909 0.73 5000 2.9991
2.3902 0.8 5500 2.9931
2.3741 0.87 6000 2.9612
2.3536 0.95 6500 2.9509
2.3392 1.02 7000 2.9289
2.3083 1.09 7500 2.9214
2.3094 1.16 8000 2.9153
2.2864 1.24 8500 2.9034
2.2893 1.31 9000 2.8963
2.2697 1.38 9500 2.8847
2.2762 1.46 10000 2.8665
2.2667 1.53 10500 2.8536
2.2548 1.6 11000 2.8472
2.238 1.67 11500 2.8491
2.2423 1.75 12000 2.8257
2.2406 1.82 12500 2.8287
2.2248 1.89 13000 2.8193
2.223 1.96 13500 2.8101
2.1995 2.04 14000 2.8027
2.1834 2.11 14500 2.7880
2.1723 2.18 15000 2.7783
2.1651 2.26 15500 2.7739
2.1575 2.33 16000 2.7825
2.1598 2.4 16500 2.7660
2.1667 2.47 17000 2.7578
2.1565 2.55 17500 2.7580
2.1558 2.62 18000 2.7561
2.1642 2.69 18500 2.7512
2.1374 2.77 19000 2.7361
2.1402 2.84 19500 2.7385
2.1326 2.91 20000 2.7235
2.1272 2.98 20500 2.7183
2.0954 3.06 21000 2.7156
2.0842 3.13 21500 2.7065
2.0859 3.2 22000 2.7089
2.0856 3.27 22500 2.6962
2.0775 3.35 23000 2.6931
2.0821 3.42 23500 2.6933
2.0706 3.49 24000 2.7011
2.0689 3.57 24500 2.7009
2.0807 3.64 25000 2.6825
2.0639 3.71 25500 2.6744
2.0742 3.78 26000 2.6777
2.0789 3.86 26500 2.6689
2.0594 3.93 27000 2.6566
2.056 4.0 27500 2.6676
2.0223 4.08 28000 2.6711
2.0185 4.15 28500 2.6568
2.018 4.22 29000 2.6567
2.0036 4.29 29500 2.6545
2.0238 4.37 30000 2.6559
2.0091 4.44 30500 2.6450
2.0096 4.51 31000 2.6389
2.0083 4.58 31500 2.6401
2.0012 4.66 32000 2.6399
2.0166 4.73 32500 2.6289
1.9963 4.8 33000 2.6348
1.9943 4.88 33500 2.6240
2.0099 4.95 34000 2.6190
1.9895 5.02 34500 2.6308
1.9581 5.09 35000 2.6385
1.9502 5.17 35500 2.6237
1.9485 5.24 36000 2.6248
1.9643 5.31 36500 2.6279
1.9535 5.38 37000 2.6185
1.9575 5.46 37500 2.6146
1.9475 5.53 38000 2.6093
1.9434 5.6 38500 2.6090
1.954 5.68 39000 2.6027
1.9509 5.75 39500 2.6107
1.9454 5.82 40000 2.5980
1.9479 5.89 40500 2.6016
1.9539 5.97 41000 2.5971
1.9119 6.04 41500 2.6228
1.8974 6.11 42000 2.6169
1.9038 6.19 42500 2.6027
1.9008 6.26 43000 2.6027
1.9142 6.33 43500 2.6011
1.8783 6.4 44000 2.5960
1.8896 6.48 44500 2.6111
1.8975 6.55 45000 2.5889
1.9048 6.62 45500 2.6007
1.9049 6.69 46000 2.5972
1.8969 6.77 46500 2.6053
1.9105 6.84 47000 2.5893
1.8921 6.91 47500 2.5883
1.8918 6.99 48000 2.5792
1.8671 7.06 48500 2.6041
1.8551 7.13 49000 2.6070
1.8555 7.2 49500 2.6148
1.8543 7.28 50000 2.6077
1.8485 7.35 50500 2.6131
1.8474 7.42 51000 2.6039
1.8474 7.5 51500 2.5973
1.8442 7.57 52000 2.5946
1.8329 7.64 52500 2.6069
1.8551 7.71 53000 2.5923
1.8433 7.79 53500 2.5922
1.851 7.86 54000 2.5993
1.8313 7.93 54500 2.5960
1.8298 8.0 55000 2.6058
1.8159 8.08 55500 2.6286
1.817 8.15 56000 2.6348
1.8066 8.22 56500 2.6411
1.7935 8.3 57000 2.6338
1.809 8.37 57500 2.6290
1.812 8.44 58000 2.6258
1.79 8.51 58500 2.6321
1.8046 8.59 59000 2.6291
1.7975 8.66 59500 2.6283
1.7968 8.73 60000 2.6284
1.7779 8.81 60500 2.6257
1.7664 8.88 61000 2.6232
1.792 8.95 61500 2.6305
1.7725 9.02 62000 2.6525
1.7563 9.1 62500 2.6794
1.7606 9.17 63000 2.6784
1.7666 9.24 63500 2.6798
1.7551 9.31 64000 2.6813
1.7578 9.39 64500 2.6830
1.7483 9.46 65000 2.6833
1.7431 9.53 65500 2.6884
1.743 9.61 66000 2.6932
1.7395 9.68 66500 2.6927
1.7473 9.75 67000 2.6904
1.7413 9.82 67500 2.6892
1.7437 9.9 68000 2.6898
1.7546 9.97 68500 2.6894

Framework versions

  • Transformers 4.21.0.dev0
  • Pytorch 1.12.0+cu102
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
3
Hosted inference API
This model can be loaded on the Inference API on-demand.

Dataset used to train davanstrien/clip-roberta-finetuned