--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Ori vi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 17.65774934574004 --- # Whisper Small Ori vi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3950 - Wer: 17.6577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.1125 | 0.0667 | 30 | 0.9877 | 30.4667 | | 0.9337 | 0.1333 | 60 | 0.7582 | 18.3338 | | 0.7185 | 0.2 | 90 | 0.4716 | 16.3129 | | 0.493 | 0.2667 | 120 | 0.4382 | 16.1893 | | 0.4328 | 0.3333 | 150 | 0.4298 | 15.6223 | | 0.4127 | 0.4 | 180 | 0.4208 | 16.8726 | | 0.3865 | 0.4667 | 210 | 0.4171 | 20.0422 | | 0.419 | 0.5333 | 240 | 0.4141 | 17.0835 | | 0.4141 | 0.6 | 270 | 0.4157 | 15.8258 | | 0.464 | 0.6667 | 300 | 0.4077 | 16.9235 | | 0.4303 | 0.7333 | 330 | 0.4043 | 18.4865 | | 0.4418 | 0.8 | 360 | 0.4050 | 16.7999 | | 0.4786 | 0.8667 | 390 | 0.3981 | 15.1352 | | 0.4238 | 0.9333 | 420 | 0.3953 | 17.0907 | | 0.3986 | 1.0 | 450 | 0.3926 | 16.7054 | | 0.2304 | 1.0667 | 480 | 0.3948 | 16.3928 | | 0.2583 | 1.1333 | 510 | 0.3943 | 16.6327 | | 0.2385 | 1.2 | 540 | 0.3997 | 15.1425 | | 0.2126 | 1.2667 | 570 | 0.3985 | 15.0552 | | 0.2259 | 1.3333 | 600 | 0.3970 | 16.5964 | | 0.2237 | 1.4 | 630 | 0.3964 | 16.5382 | | 0.2344 | 1.4667 | 660 | 0.3983 | 17.9485 | | 0.2068 | 1.5333 | 690 | 0.3974 | 17.9703 | | 0.2535 | 1.6 | 720 | 0.3950 | 17.6577 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0