Back to home
All Datasets 🏷
All datasets from our datasets repository and community bucket.
Also check out the list of supported Metrics 📉.
29 results
Allegro Reviews is a sentiment analysis dataset, consisting of 11,588 product reviews written in Polish and extracted from Allegro.pl - a popular e-commerce marketplace. Each review contains at least 50 words and has a rating on a scale from one (negative review) to five (positive review). We recommend using the provided train/dev/test split. The ratings for the test set reviews are kept hidden. You can evaluate your model using the online evaluation tool available on klejbenchmark.com.
We provide an Amazon product reviews dataset for multilingual text classification. The dataset contains reviews in English, Japanese, German, French, Chinese and Spanish, collected between November 1, 2015 and November 1, 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID and the coarse-grained product category (e.g. ‘books’, ‘appliances’, etc.) The corpus is balanced across stars, so each star rating constitutes 20% of the reviews in each language. For each language, there are 200,000, 5,000 and 5,000 reviews in the training, development and test sets respectively. The maximum number of reviews per reviewer is 20 and the maximum number of reviews per product is 20. All reviews are truncated after 2,000 characters, and all reviews are at least 20 characters long. Note that the language of a review does not necessarily match the language of its marketplace (e.g. reviews from amazon.de are primarily written in German, but could also be written in English, etc.). For this reason, we applied a language detection algorithm based on the work in Bojanowski et al. (2017) to determine the language of the review text and we removed reviews that were not written in the expected language.
It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)
ASSET is a dataset for evaluating Sentence Simplification systems with multiple rewriting transformations, as described in "ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations". The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 10 times by different annotators. The corpus also contains human judgments of meaning preservation, fluency and simplicity for the outputs of several automatic text simplification systems.
The ASSIN (Avaliação de Similaridade Semântica e INferência textual) corpus is a corpus annotated with pairs of sentences written in Portuguese that is suitable for the exploration of textual entailment and paraphrasing classifiers. The corpus contains pairs of sentences extracted from news articles written in European Portuguese (EP) and Brazilian Portuguese (BP), obtained from Google News Portugal and Brazil, respectively. To create the corpus, the authors started by collecting a set of news articles describing the same event (one news article from Google News Portugal and another from Google News Brazil) from Google News. Then, they employed Latent Dirichlet Allocation (LDA) models to retrieve pairs of similar sentences between sets of news articles that were grouped together around the same topic. For that, two LDA models were trained (for EP and for BP) on external and large-scale collections of unannotated news articles from Portuguese and Brazilian news providers, respectively. Then, the authors defined a lower and upper threshold for the sentence similarity score of the retrieved pairs of sentences, taking into account that high similarity scores correspond to sentences that contain almost the same content (paraphrase candidates), and low similarity scores correspond to sentences that are very different in content from each other (no-relation candidates). From the collection of pairs of sentences obtained at this stage, the authors performed some manual grammatical corrections and discarded some of the pairs wrongly retrieved. Furthermore, from a preliminary analysis made to the retrieved sentence pairs the authors noticed that the number of contradictions retrieved during the previous stage was very low. Additionally, they also noticed that event though paraphrases are not very frequent, they occur with some frequency in news articles. Consequently, in contrast with the majority of the currently available corpora for other languages, which consider as labels “neutral”, “entailment” and “contradiction” for the task of RTE, the authors of the ASSIN corpus decided to use as labels “none”, “entailment” and “paraphrase”. Finally, the manual annotation of pairs of sentences was performed by human annotators. At least four annotators were randomly selected to annotate each pair of sentences, which is done in two steps: (i) assigning a semantic similarity label (a score between 1 and 5, from unrelated to very similar); and (ii) providing an entailment label (one sentence entails the other, sentences are paraphrases, or no relation). Sentence pairs where at least three annotators do not agree on the entailment label were considered controversial and thus discarded from the gold standard annotations. The full dataset has 10,000 sentence pairs, half of which in Brazilian Portuguese and half in European Portuguese. Either language variant has 2,500 pairs for training, 500 for validation and 2,000 for testing.
The ASSIN 2 corpus is composed of rather simple sentences. Following the procedures of SemEval 2014 Task 1. The training and validation data are composed, respectively, of 6,500 and 500 sentence pairs in Brazilian Portuguese, annotated for entailment and semantic similarity. Semantic similarity values range from 1 to 5, and text entailment classes are either entailment or none. The test data are composed of approximately 3,000 sentence pairs with the same annotation. All data were manually annotated.
A dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet. Each claim is accompanied by five manually annotated evidence sentences retrieved from the English Wikipedia that support, refute or do not give enough information to validate the claim totalling in 7,675 claim-evidence pairs. The dataset features challenging claims that relate multiple facets and disputed cases of claims where both supporting and refuting evidence are present.
ConvAI is a dataset of human-to-bot conversations labelled for quality. This data can be used to train a metric for evaluating dialogue systems. Moreover, it can be used in the development of chatbots themselves: it contains the information on the quality of utterances and entire dialogues, that can guide a dialogue system in search of better answers.
ConvAI is a dataset of human-to-bot conversations labelled for quality. This data can be used to train a metric for evaluating dialogue systems. Moreover, it can be used in the development of chatbots themselves: it contains the information on the quality of utterances and entire dialogues, that can guide a dialogue system in search of better answers.
The Conv AI 3 challenge is organized as part of the Search-oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In Information Retrieval (IR) settings such a situation is handled mainly through the diversification of search result page. It is however much more challenging in dialogue settings. Hence, we aim to study the following situation for dialogue settings: - a user is asking an ambiguous question (where ambiguous question is a question to which one can return > 1 possible answers) - the system must identify that the question is ambiguous, and, instead of trying to answer it directly, ask a good clarifying question.
The COrpus of Urdu News TExt Reuse (COUNTER) corpus contains 1200 documents with real examples of text reuse from the field of journalism. It has been manually annotated at document level with three levels of reuse: wholly derived, partially derived and non derived.
Google's query wellformedness dataset was created by crowdsourcing well-formedness annotations for 25,100 queries from the Paralex corpus. Every query was annotated by five raters each with 1/0 rating of whether or not the query is well-formed.
This dataset is a new knowledge-base (KB) of hasPart relationships, extracted from a large corpus of generic statements. Complementary to other resources available, it is the first which is all three of: accurate (90% precision), salient (covers relationships a person may mention), and has high coverage of common terms (approximated as within a 10 year old’s vocabulary), as well as having several times more hasPart entries than in the popular ontologies ConceptNet and WordNet. In addition, it contains information about quantifiers, argument modifiers, and links the entities to appropriate concepts in Wikipedia and WordNet.
To examine the cognitive processes of remembering and imagining and their traces in language, we introduce Hippocorpus, a dataset of 6,854 English diary-like short stories about recalled and imagined events. Using a crowdsourcing framework, we first collect recalled stories and summaries from workers, then provide these summaries to other workers who write imagined stories. Finally, months later, we collect a retold version of the recalled stories from a subset of recalled authors. Our dataset comes paired with author demographics (age, gender, race), their openness to experience, as well as some variables regarding the author's relationship to the event (e.g., how personal the event is, how often they tell its story, etc.).
The researchers of OCLAR Marwan et al. (2019), they gathered Arabic costumer reviews from Google reviewsa and Zomato website (https://www.zomato.com/lebanon) on wide scope of domain, including restaurants, hotels, hospitals, local shops, etc.The corpus finally contains 3916 reviews in 5-rating scale. For this research purpose, the positive class considers rating stars from 5 to 3 of 3465 reviews, and the negative class is represented from values of 1 and 2 of about 451 texts.
PAWS: Paraphrase Adversaries from Word Scrambling This dataset contains 108,463 human-labeled and 656k noisily labeled pairs that feature the importance of modeling structure, context, and word order information for the problem of paraphrase identification. The dataset has two subsets, one based on Wikipedia and the other one based on the Quora Question Pairs (QQP) dataset. For further details, see the accompanying paper: PAWS: Paraphrase Adversaries from Word Scrambling (https://arxiv.org/abs/1904.01130) PAWS-QQP is not available due to license of QQP. It must be reconstructed by downloading the original data and then running our scripts to produce the data and attach the labels. NOTE: There might be some missing or wrong labels in the dataset and we have replaced them with -1.
PAWS-X, a multilingual version of PAWS (Paraphrase Adversaries from Word Scrambling) for six languages. This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. English language is available by default. All translated pairs are sourced from examples in PAWS-Wiki. For further details, see the accompanying paper: PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification (https://arxiv.org/abs/1908.11828) NOTE: There might be some missing or wrong labels in the dataset and we have replaced them with -1.
NLM produces a baseline set of MEDLINE/PubMed citation records in XML format for download on an annual basis. The annual baseline is released in December of each year. Each day, NLM produces update files that include new, revised and deleted citations. See our documentation page for more information.
The SemEval-2014 Task 1 focuses on Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Entailment. The task was designed to predict the degree of relatedness between two sentences and to detect the entailment relation holding between them.
SentimentWortschatz, or SentiWS for short, is a publicly available German-language resource for sentiment analysis, and pos-tagging. The POS tags are ["NN", "VVINF", "ADJX", "ADV"] -> ["noun", "verb", "adjective", "adverb"], and positive and negative polarity bearing words are weighted within the interval of [-1, 1].
A translation of the word pair similarity dataset wordsim-353 to Twi. The dataset was presented in the paper Alabi et al.: Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yorùbá and Twi (LREC 2020).
A translation of the word pair similarity dataset wordsim-353 to Yorùbá. The dataset was presented in the paper Alabi et al.: Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yorùbá and Twi (LREC 2020).