Back to home
All Datasets 🏷
All datasets from our datasets repository and community bucket.
Also check out the list of supported Metrics 📉.
124 results
ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data. This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug. DRUG-AE.rel provides relations between drugs and adverse effects. DRUG-DOSE.rel provides relations between drugs and dosages. ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.
Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop when dealing with domain text, especially for a domain with lots of special terms and diverse writing styles, such as the biomedical domain. However, building domain-specific CWS requires extremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant knowledge from high resource to low resource domains. Extensive experiments show that our mode achieves consistently higher accuracy than the single-task CWS and other transfer learning baselines, especially when there is a large disparity between source and target domains. This dataset is the accompanied medical Chinese word segmentation (CWS) dataset. The tags are in BIES scheme. For more details see https://www.aclweb.org/anthology/C18-1307/
The Dialectal Arabic Datasets contain four dialects of Arabic, Etyptian (EGY), Levantine (LEV), Gulf (GLF), and Maghrebi (MGR). Each dataset consists of a set of 350 manually segmented and POS tagged tweets.
ASSET is a dataset for evaluating Sentence Simplification systems with multiple rewriting transformations, as described in "ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations". The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 10 times by different annotators. The corpus also contains human judgments of meaning preservation, fluency and simplicity for the outputs of several automatic text simplification systems.
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions. A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721. Here we present brief descriptions of all the methods used and a statistical analysis of the results. We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible, and furthermore that the best result makes use of the lowest scoring submissions. For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/ The original dataset can be downloaded from: https://biocreative.bioinformatics.udel.edu/resources/corpora/biocreative-ii-corpus/ This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll
The Bengali Hate Speech Dataset is a collection of Bengali articles collected from Bengali news articles, news dump of Bengali TV channels, books, blogs, and social media. Emphasis was placed on Facebook pages and newspaper sources because they attract close to 50 million followers and is a common source of opinions and hate speech. The raw text corpus contains 250 million articles and the full dataset is being prepared for release. This is a subset of the full dataset. This dataset was prepared for hate-speech text classification benchmark on Bengali, an under-resourced language.
Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations. We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.
ChrEn is a Cherokee-English parallel dataset to facilitate machine translation research between Cherokee and English. ChrEn is extremely low-resource contains 14k sentence pairs in total, split in ways that facilitate both in-domain and out-of-domain evaluation. ChrEn also contains 5k Cherokee monolingual data to enable semi-supervised learning.
A dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet. Each claim is accompanied by five manually annotated evidence sentences retrieved from the English Wikipedia that support, refute or do not give enough information to validate the claim totalling in 7,675 claim-evidence pairs. The dataset features challenging claims that relate multiple facets and disputed cases of claims where both supporting and refuting evidence are present.
The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.
ConvAI is a dataset of human-to-bot conversations labelled for quality. This data can be used to train a metric for evaluating dialogue systems. Moreover, it can be used in the development of chatbots themselves: it contains the information on the quality of utterances and entire dialogues, that can guide a dialogue system in search of better answers.
ConvAI is a dataset of human-to-bot conversations labelled for quality. This data can be used to train a metric for evaluating dialogue systems. Moreover, it can be used in the development of chatbots themselves: it contains the information on the quality of utterances and entire dialogues, that can guide a dialogue system in search of better answers.
The Conv AI 3 challenge is organized as part of the Search-oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In Information Retrieval (IR) settings such a situation is handled mainly through the diversification of search result page. It is however much more challenging in dialogue settings. Hence, we aim to study the following situation for dialogue settings: - a user is asking an ambiguous question (where ambiguous question is a question to which one can return > 1 possible answers) - the system must identify that the question is ambiguous, and, instead of trying to answer it directly, ask a good clarifying question.
We study negotiation dialogues where two agents, a buyer and a seller, negotiate over the price of an time for sale. We collected a dataset of more than 6K negotiation dialogues over multiple categories of products scraped from Craigslist. Our goal is to develop an agent that negotiates with humans through such conversations. The challenge is to handle both the negotiation strategy and the rich language for bargaining.
The DaNE dataset has been annotated with Named Entities for PER, ORG and LOC by the Alexandra Institute. It is a reannotation of the UD-DDT (Universal Dependency - Danish Dependency Treebank) which has annotations for dependency parsing and part-of-speech (POS) tagging. The Danish UD treebank (Johannsen et al., 2015, UD-DDT) is a conversion of the Danish Dependency Treebank (Buch-Kromann et al. 2003) based on texts from Parole (Britt, 1998).
The dataset consists of 9008 sentences that are labelled with fine-grained polarity in the range from -2 to 2 (negative to postive). The quality of the fine-grained is not cross validated and is therefore subject to uncertainties; however, the simple polarity has been cross validated and therefore is considered to be more correct.
Benchmark dataset for low-resource multiclass classification, with 4,015 training, 500 testing, and 500 validation examples, each labeled as part of five classes. Each sample can be a part of multiple classes. Collected as tweets.
DialogRE is the first human-annotated dialogue based relation extraction (RE) dataset aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. The dataset annotates all occurrences of 36 possible relation types that exist between pairs of arguments in the 1,788 dialogues originating from the complete transcripts of Friends.
Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.
DREAM is a multiple-choice Dialogue-based REAding comprehension exaMination dataset. In contrast to existing reading comprehension datasets, DREAM is the first to focus on in-depth multi-turn multi-party dialogue understanding.
The Did You Know (pol. Czy wiesz?) dataset consists of human-annotated question-answer pairs. The task is to predict if the answer is correct. We chose the negatives which have the largest token overlap with a question.
WebNLG is a valuable resource and benchmark for the Natural Language Generation (NLG) community. However, as other NLG benchmarks, it only consists of a collection of parallel raw representations and their corresponding textual realizations. This work aimed to provide intermediate representations of the data for the development and evaluation of popular tasks in the NLG pipeline architecture (Reiter and Dale, 2000), such as Discourse Ordering, Lexicalization, Aggregation and Referring Expression Generation.
In October 2012, the European Union's (EU) Directorate General for Education and Culture ( DG EAC) released a translation memory (TM), i.e. a collection of sentences and their professionally produced translations, in twenty-six languages. This resource bears the name EAC Translation Memory, short EAC-TM. EAC-TM covers up to 26 languages: 22 official languages of the EU (all except Irish) plus Icelandic, Croatian, Norwegian and Turkish. EAC-TM thus contains translations from English into the following 25 languages: Bulgarian, Czech, Danish, Dutch, Estonian, German, Greek, Finnish, French, Croatian, Hungarian, Icelandic, Italian, Latvian, Lithuanian, Maltese, Norwegian, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish and Turkish. All documents and sentences were originally written in English (source language is English) and then translated into the other languages. The texts were translated by staff of the National Agencies of the Lifelong Learning and Youth in Action programmes. They are typically professionals in the field of education/youth and EU programmes. They are thus not professional translators, but they are normally native speakers of the target language.
In October 2012, the European Union (EU) agency 'European Centre for Disease Prevention and Control' (ECDC) released a translation memory (TM), i.e. a collection of sentences and their professionally produced translations, in twenty-five languages. This resource bears the name EAC Translation Memory, short EAC-TM. ECDC-TM covers 25 languages: the 23 official languages of the EU plus Norwegian (Norsk) and Icelandic. ECDC-TM was created by translating from English into the following 24 languages: Bulgarian, Czech, Danish, Dutch, English, Estonian, Gaelige (Irish), German, Greek, Finnish, French, Hungarian, Icelandic, Italian, Latvian, Lithuanian, Maltese, Norwegian (NOrsk), Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish and Swedish. All documents and sentences were thus originally written in English. They were then translated into the other languages by professional translators from the Translation Centre CdT in Luxembourg.
Data and code from our "Inferring Which Medical Treatments Work from Reports of Clinical Trials", NAACL 2019. This work concerns inferring the results reported in clinical trials from text. The dataset consists of biomedical articles describing randomized control trials (RCTs) that compare multiple treatments. Each of these articles will have multiple questions, or 'prompts' associated with them. These prompts will ask about the relationship between an intervention and comparator with respect to an outcome, as reported in the trial. For example, a prompt may ask about the reported effects of aspirin as compared to placebo on the duration of headaches. For the sake of this task, we assume that a particular article will report that the intervention of interest either significantly increased, significantly decreased or had significant effect on the outcome, relative to the comparator. The dataset could be used for automatic data extraction of the results of a given RCT. This would enable readers to discover the effectiveness of different treatments without needing to read the paper.
EXAMS is a benchmark dataset for multilingual and cross-lingual question answering from high school examinations. It consists of more than 24,000 high-quality high school exam questions in 16 languages, covering 8 language families and 24 school subjects from Natural Sciences and Social Sciences, among others.
Contains Farsi (Persian) datasets for Machine Learning tasks, particularly NLP. These datasets have been extracted from the RSS feed of two Farsi news agency websites: - Hamshahri - RadioFarda
The directory data contains a corpus of Finnish technology related news articles with a manually prepared named entity annotation (digitoday.2014.csv). The text material was extracted from the archives of Digitoday, a Finnish online technology news source (www.digitoday.fi). The corpus consists of 953 articles (193,742 word tokens) with six named entity classes (organization, location, person, product, event, and date). The corpus is available for research purposes and can be readily used for development of NER systems for Finnish.
The Hausa VOA NER dataset is a labeled dataset for named entity recognition in Hausa. The texts were obtained from Hausa Voice of America News articles https://www.voahausa.com/ . We concentrate on four types of named entities: persons [PER], locations [LOC], organizations [ORG], and dates & time [DATE]. The Hausa VOA NER data files contain 2 columns separated by a tab ('\t'). Each word has been put on a separate line and there is an empty line after each sentences i.e the CoNLL format. The first item on each line is a word, the second is the named entity tag. The named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. For every multi-word expression like 'New York', the first word gets a tag B-TYPE and the subsequent words have tags I-TYPE, a word with tag O is not part of a phrase. The dataset is in the BIO tagging scheme. For more details, see https://www.aclweb.org/anthology/2020.emnlp-main.204/
A collection of news article headlines in Hausa from VOA Hausa. Each headline is labeled with one of the following classes: Nigeria, Africa, World, Health or Politics. The dataset was presented in the paper: Hedderich, Adelani, Zhu, Alabi, Markus, Klakow: Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages (EMNLP 2020).
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio de Sanidad, Consumo y Bienestar Social. The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.
The Hindi Discourse Analysis dataset is a corpus for analyzing discourse modes present in its sentences. It contains sentences from stories written by 11 famous authors from the 20th Century. 4-5 stories by each author have been selected which were available in the public domain resulting in a collection of 53 stories. Most of these short stories were originally written in Hindi but some of them were written in other Indian languages and later translated to Hindi.
To examine the cognitive processes of remembering and imagining and their traces in language, we introduce Hippocorpus, a dataset of 6,854 English diary-like short stories about recalled and imagined events. Using a crowdsourcing framework, we first collect recalled stories and summaries from workers, then provide these summaries to other workers who write imagined stories. Finally, months later, we collect a retold version of the recalled stories from a subset of recalled authors. Our dataset comes paired with author demographics (age, gender, race), their openness to experience, as well as some variables regarding the author's relationship to the event (e.g., how personal the event is, how often they tell its story, etc.).
A Hope Speech dataset for Equality, Diversity and Inclusion (HopeEDI) containing user-generated comments from the social media platform YouTube with 28,451, 20,198 and 10,705 comments in English, Tamil and Malayalam, respectively, manually labelled as containing hope speech or not.
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. It is a gold standard benchmark for developing and evaluating GEC systems with respect to fluency (extent to which a text is native-sounding) as well as grammaticality. For each source document, there are four human-written corrections (ref0 to ref3).
The Kannada news dataset contains only the headlines of news article in three categories: Entertainment, Tech, and Sports. The data set contains around 6300 news article headlines which collected from Kannada news websites. The data set has been cleaned and contains train and test set using which can be used to benchmark classification models in Kannada.
KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation.\
KILT tasks training and evaluation data. - [FEVER](https://fever.ai) | Fact Checking | fever - [AIDA CoNLL-YAGO](https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads) | Entity Linking | aidayago2 - [WNED-WIKI](https://github.com/U-Alberta/wned) | Entity Linking | wned - [WNED-CWEB](https://github.com/U-Alberta/wned) | Entity Linking | cweb - [T-REx](https://hadyelsahar.github.io/t-rex) | Slot Filling | trex - [Zero-Shot RE](http://nlp.cs.washington.edu/zeroshot) | Slot Filling | structured_zeroshot - [Natural Questions](https://ai.google.com/research/NaturalQuestions) | Open Domain QA | nq - [HotpotQA](https://hotpotqa.github.io) | Open Domain QA | hotpotqa - [TriviaQA](http://nlp.cs.washington.edu/triviaqa) | Open Domain QA | triviaqa - [ELI5](https://facebookresearch.github.io/ELI5/explore.html) | Open Domain QA | eli5 - [Wizard of Wikipedia](https://parl.ai/projects/wizard_of_wikipedia) | Dialogue | wow To finish linking TriviaQA questions to the IDs provided, follow the instructions [here](http://github.com/huggingface/datasets/datasets/kilt_tasks/README.md).
This is a Korean paired question dataset containing labels indicating whether two questions in a given pair are semantically identical. This dataset was used to evaluate the performance of [KoGPT2](https://github.com/SKT-AI/KoGPT2#subtask-evaluations) on a phrase detection downstream task.
This is LiveQA, a Chinese dataset constructed from play-by-play live broadcast. It contains 117k multiple-choice questions written by human commentators for over 1,670 NBA games, which are collected from the Chinese Hupu website.
Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites. Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers. We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models, detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness.
MedHop is based on research paper abstracts from PubMed, and the queries are about interactions between pairs of drugs. The correct answer has to be inferred by combining information from a chain of reactions of drugs and proteins.
The dataset consists of tweets belonging to #MeToo movement on Twitter, labelled into different categories. Due to Twitter's development policies, we only provide the tweet ID's and corresponding labels, other data can be fetched via Twitter API. The data has been labelled by experts, with the majority taken into the account for deciding the final label. We provide these labels for each of the tweets. The labels provided for each data point includes -- Relevance, Directed Hate, Generalized Hate, Sarcasm, Allegation, Justification, Refutation, Support, Oppose
We introduce MKQA, an open-domain question answering evaluation set comprising 10k question-answer pairs sampled from the Google Natural Questions dataset, aligned across 26 typologically diverse languages (260k question-answer pairs in total). For each query we collected new passage-independent answers. These queries and answers were then human translated into 25 Non-English languages.
This dataset contains sentences and short paragraphs with corresponding shorter (compressed) versions. There are up to five compressions for each input text, together with quality judgements of their meaning preservation and grammaticality. The dataset is derived using source texts from the Open American National Corpus (ww.anc.org) and crowd-sourcing.
Translator Human Parity Data Human evaluation results and translation output for the Translator Human Parity Data release, as described in https://blogs.microsoft.com/ai/machine-translation-news-test-set-human-parity/. The Translator Human Parity Data release contains all human evaluation results and translations related to our paper "Achieving Human Parity on Automatic Chinese to English News Translation", published on March 14, 2018.
MultiReQA contains the sentence boundary annotation from eight publicly available QA datasets including SearchQA, TriviaQA, HotpotQA, NaturalQuestions, SQuAD, BioASQ, RelationExtraction, and TextbookQA. Five of these datasets, including SearchQA, TriviaQA, HotpotQA, NaturalQuestions, SQuAD, contain both training and test data, and three, including BioASQ, RelationExtraction, TextbookQA, contain only the test data
The Myanmar news dataset contains article snippets in four categories: Business, Entertainment, Politics, and Sport. These were collected in October 2017 by Aye Hninn Khine
This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®). Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations. Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked against annotations of the rest of the corpus to assure corpus-wide consistency. For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/ The original dataset can be downloaded from: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBI_corpus.zip This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll Note: there is a duplicate document (PMID 8528200) in the original data, and the duplicate is recreated in the converted data.
The development of linguistic resources for use in natural language processingis of utmost importance for the continued growth of research anddevelopment in the field, especially for resource-scarce languages. In this paper we describe the process and challenges of simultaneouslydevelopingmultiple linguistic resources for ten of the official languages of South Africa. The project focussed on establishing a set of foundational resources that can foster further development of both resources and technologies for the NLP industry in South Africa. The development efforts during the project included creating monolingual unannotated corpora, of which a subset of the corpora for each language was annotated on token, orthographic, morphological and morphosyntactic layers. The annotated subsetsincludes both development and test setsand were used in the creation of five core-technologies, viz. atokeniser, sentenciser,lemmatiser, part of speech tagger and morphological decomposer for each language. We report on the quality of these tools for each language and provide some more context of the importance of the resources within the South African context.
Fused Head constructions are noun phrases in which the head noun is missing and is said to be "fused" with its dependent modifier. This missing information is implicit and is important for sentence understanding.The missing heads are easily filled in by humans, but pose a challenge for computational models. For example, in the sentence: "I bought 5 apples but got only 4.", 4 is a Fused-Head, and the missing head is apples, which appear earlier in the sentence. This is a crowd-sourced dataset of 10k numerical fused head examples (1M tokens).
The researchers of OCLAR Marwan et al. (2019), they gathered Arabic costumer reviews from Google reviewsa and Zomato website (https://www.zomato.com/lebanon) on wide scope of domain, including restaurants, hotels, hospitals, local shops, etc.The corpus finally contains 3916 reviews in 5-rating scale. For this research purpose, the positive class considers rating stars from 5 to 3 of 3465 reviews, and the negative class is represented from values of 1 and 2 of about 451 texts.
Offensive language identification in dravidian lanaguages dataset. The goal of this task is to identify offensive language content of the code-mixed dataset of comments/posts in Dravidian Languages ( (Tamil-English, Malayalam-English, and Kannada-English)) collected from social media.
This is a collection of copyright free books aligned by Andras Farkas, which are available from http://www.farkastranslations.com/bilingual_books.php Note that the texts are rather dated due to copyright issues and that some of them are manually reviewed (check the meta-data at the top of the corpus files in XML). The source is multilingually aligned, which is available from http://www.farkastranslations.com/bilingual_books.php. In OPUS, the alignment is formally bilingual but the multilingual alignment can be recovered from the XCES sentence alignment files. Note also that the alignment units from the original source may include multi-sentence paragraphs, which are split and sentence-aligned in OPUS. All texts are freely available for personal, educational and research use. Commercial use (e.g. reselling as parallel books) and mass redistribution without explicit permission are not granted. Please acknowledge the source when using the data! 16 languages, 64 bitexts total number of files: 158 total number of tokens: 19.50M total number of sentence fragments: 0.91M
Person SenTiment (PerSenT) is a crowd-sourced dataset that captures the sentiment of an author towards the main entity in a news article. This dataset contains annotation for 5.3k documents and 38k paragraphs covering 3.2k unique entities. The dataset consists of sentiment annotations on news articles about people. For each article, annotators judge what the author’s sentiment is towards the main (target) entity of the article. The annotations also include similar judgments on paragraphs within the article. To split the dataset, entities into 4 mutually exclusive sets. Due to the nature of news collections, some entities tend to dominate the collection. In the collection, there were four entities which were the main entity in nearly 800 articles. To avoid these entities from dominating the train or test splits, we moved them to a separate test collection. We split the remaining into a training, dev, and test sets at random. Thus our collection includes one standard test set consisting of articles drawn at random (Test Standard -- `test_random`), while the other is a test set which contains multiple articles about a small number of popular entities (Test Frequent -- `test_fixed`).
This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz. CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages.
The PolEmo2.0 is a set of online reviews from medicine and hotels domains. The task is to predict the sentiment of a review. There are two separate test sets, to allow for in-domain (medicine and hotels) as well as out-of-domain (products and university) validation.
This dataset is for studying computational models trained to reason about prototypical situations. Using deterministic filtering a sampling from a larger set of all transcriptions was built. It contains 9789 instances where each instance represents a survey question from Family Feud game. Each instance exactly is a question, a set of answers, and a count associated with each answer. Each line is a json dictionary, in which: 1. question - contains the question (in original and a normalized form) 2. answerstrings - contains the original answers provided by survey respondents (when available), along with the counts for each string. Because the FamilyFeud data has only cluster names rather than strings, those cluster names are included with 0 weight. 3. answer-clusters - lists clusters, with the count of each cluster and the strings included in that cluster. Each cluster is given a unique ID that can be linked to in the assessment files.
The Polish Summaries Corpus contains news articles and their summaries. We used summaries of the same article as positive pairs and sampled the most similar summaries of different articles as negatives.
QED, is a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. It is an expertannotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset.
The RONEC (Named Entity Corpus for the Romanian language) dataset contains over 26000 entities in ~5000 annotated sentence, belonging to 16 distinct classes. It represents the first initiative in the Romanian language space specifically targeted for named entity recognition
A new multi-target dataset of 5.4K TLDRs over 3.2K papers. SCITLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden.
The SemEval-2014 Task 1 focuses on Evaluation of Compositional Distributional Semantic Models on Full Sentences through Semantic Relatedness and Entailment. The task was designed to predict the degree of relatedness between two sentences and to detect the entailment relation holding between them.
DFKI SmartData Corpus is a dataset of 2598 German-language documents which has been annotated with fine-grained geo-entities, such as streets, stops and routes, as well as standard named entity types. It has also been annotated with a set of 15 traffic- and industry-related n-ary relations and events, such as Accidents, Traffic jams, Acquisitions, and Strikes. The corpus consists of newswire texts, Twitter messages, and traffic reports from radio stations, police and railway companies. It allows for training and evaluating both named entity recognition algorithms that aim for fine-grained typing of geo-entities, as well as n-ary relation extraction systems.
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research. It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition, which we here use to identifynames of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists.
Here are two different adversaries, each of which uses a different procedure to pick the sentence it adds to the paragraph: AddSent: Generates up to five candidate adversarial sentences that don't answer the question, but have a lot of words in common with the question. Picks the one that most confuses the model. AddOneSent: Similar to AddSent, but just picks one of the candidate sentences at random. This adversary is does not query the model in any way.
Webbnyheter 2012 from Spraakbanken, semi-manually annotated and adapted for CoreNLP Swedish NER. Semi-manually defined in this case as: Bootstrapped from Swedish Gazetters then manually correcte/reviewed by two independent native speaking swedish annotators. No annotator agreement calculated.
Taskmaster-1 is a goal-oriented conversational dataset. It includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken "Wizard of Oz" (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is "self-dialog" in which crowdsourced workers write the entire dialog themselves.
Taskmaster is dataset for goal oriented conversations. The Taskmaster-2 dataset consists of 17,289 dialogs in the seven domains which include restaurants, food ordering, movies, hotels, flights, music and sports. Unlike Taskmaster-1, which includes both written "self-dialogs" and spoken two-person dialogs, Taskmaster-2 consists entirely of spoken two-person dialogs. In addition, while Taskmaster-1 is almost exclusively task-based, Taskmaster-2 contains a good number of search- and recommendation-oriented dialogs. All dialogs in this release were created using a Wizard of Oz (WOz) methodology in which crowdsourced workers played the role of a 'user' and trained call center operators played the role of the 'assistant'. In this way, users were led to believe they were interacting with an automated system that “spoke” using text-to-speech (TTS) even though it was in fact a human behind the scenes. As a result, users could express themselves however they chose in the context of an automated interface.
Taskmaster is dataset for goal oriented conversations. The Taskmaster-3 dataset consists of 23,757 movie ticketing dialogs. By "movie ticketing" we mean conversations where the customer's goal is to purchase tickets after deciding on theater, time, movie name, number of tickets, and date, or opt out of the transaction. This collection was created using the "self-dialog" method. This means a single, crowd-sourced worker is paid to create a conversation writing turns for both speakers, i.e. the customer and the ticketing agent.
Thai Toxicity Tweet Corpus contains 3,300 tweets annotated by humans with guidelines including a 44-word dictionary. The author obtained 2,027 and 1,273 toxic and non-toxic tweets, respectively; these were labeled by three annotators. The result of corpus analysis indicates that tweets that include toxic words are not always toxic. Further, it is more likely that a tweet is toxic, if it contains toxic words indicating their original meaning. Moreover, disagreements in annotation are primarily because of sarcasm, unclear existing target, and word sense ambiguity. Notes from data cleaner: The data is included into [huggingface/datasets](https://www.github.com/huggingface/datasets) in Dec 2020. By this time, 506 of the tweets are not available publicly anymore. We denote these by `TWEET_NOT_FOUND` in `tweet_text`. Processing can be found at [this PR](https://github.com/tmu-nlp/ThaiToxicityTweetCorpus/pull/1).
`thaiqa_squad` is an open-domain, extractive question answering dataset (4,000 questions in `train` and 74 questions in `dev`) in [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format, originally created by [NECTEC](https://www.nectec.or.th/en/) from Wikipedia articles and adapted to [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format by [PyThaiNLP](https://github.com/PyThaiNLP/).
On social media, Arabic speakers tend to express themselves in their own local dialect. To do so, Tunisians use "Tunisian Arabizi", which consists in supplementing numerals to the Latin script rather than the Arabic alphabet. TUNIZI is the first Tunisian Arabizi Dataset including 3K sentences, balanced, covering different topics, preprocessed and annotated as positive and negative.
TURKCorpus is a dataset for evaluating sentence simplification systems that focus on lexical paraphrasing, as described in "Optimizing Statistical Machine Translation for Text Simplification". The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 8 times by different annotators.
UMC005 English-Urdu is a parallel corpus of texts in English and Urdu language with sentence alignments. The corpus can be used for experiments with statistical machine translation. The texts come from four different sources: - Quran - Bible - Penn Treebank (Wall Street Journal) - Emille corpus The authors provide the religious texts of Quran and Bible for direct download. Because of licensing reasons, Penn and Emille texts cannot be redistributed freely. However, if you already hold a license for the original corpora, we are able to provide scripts that will recreate our data on your disk. Our modifications include but are not limited to the following: - Correction of Urdu translations and manual sentence alignment of the Emille texts. - Manually corrected sentence alignment of the other corpora. - Our data split (training-development-test) so that our published experiments can be reproduced. - Tokenization (optional, but needed to reproduce our experiments). - Normalization (optional) of e.g. European vs. Urdu numerals, European vs. Urdu punctuation, removal of Urdu diacritics.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
“Urdu Sentiment Corpus” (USC) shares the dat of Urdu tweets for the sentiment analysis and polarity detection. The dataset is consisting of tweets and overall, the dataset is comprising over 17, 185 tokens with 52% records as positive, and 48 % records as negative.
Tags: PER(人名), LOC(地点名), GPE(行政区名), ORG(机构名) Label Tag Meaning PER PER.NAM 名字(张三) PER.NOM 代称、类别名(穷人) LOC LOC.NAM 特指名称(紫玉山庄) LOC.NOM 泛称(大峡谷、宾馆) GPE GPE.NAM 行政区的名称(北京) ORG ORG.NAM 特定机构名称(通惠医院) ORG.NOM 泛指名称、统称(文艺公司)
Write & Improve (Yannakoudakis et al., 2018) is an online web platform that assists non-native English students with their writing. Specifically, students from around the world submit letters, stories, articles and essays in response to various prompts, and the W&I system provides instant feedback. Since W&I went live in 2014, W&I annotators have manually annotated some of these submissions and assigned them a CEFR level.
WikiLingua is a large-scale multilingual dataset for the evaluation of crosslingual abstractive summarization systems. The dataset includes ~770k article and summary pairs in 18 languages from WikiHow. The gold-standard article-summary alignments across languages was done by aligning the images that are used to describe each how-to step in an article.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. Task 1 uses Wikipedia data for 6 language pairs that includes high-resource English--German (En-De) and English--Chinese (En-Zh), medium-resource Romanian--English (Ro-En) and Estonian--English (Et-En), and low-resource Sinhalese--English (Si-En) and Nepalese--English (Ne-En), as well as a dataset with a combination of Wikipedia articles and Reddit articles for Russian-English (En-Ru). The datasets were collected by translating sentences sampled from source language articles using state-of-the-art NMT models built using the fairseq toolkit and annotated with Direct Assessment (DA) scores by professional translators. Each sentence was annotated following the FLORES setup, which presents a form of DA, where at least three professional translators rate each sentence from 0-100 according to the perceived translation quality. DA scores are standardised using the z-score by rater. Participating systems are required to score sentences according to z-standardised DA scores.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. Task 2 evaluates the application of QE for post-editing purposes. It consists of predicting: - A/ Word-level tags. This is done both on source side (to detect which words caused errors) and target side (to detect mistranslated or missing words). - A1/ Each token is tagged as either `OK` or `BAD`. Additionally, each gap between two words is tagged as `BAD` if one or more missing words should have been there, and `OK` otherwise. Note that number of tags for each target sentence is 2*N+1, where N is the number of tokens in the sentence. - A2/ Tokens are tagged as `OK` if they were correctly translated, and `BAD` otherwise. Gaps are not tagged. - B/ Sentence-level HTER scores. HTER (Human Translation Error Rate) is the ratio between the number of edits (insertions/deletions/replacements) needed and the reference translation length.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.
WUT Relations Between Sentences Corpus contains 2827 pairs of related sentences. Relationships are derived from Cross-document Structure Theory (CST), which enables multi-document summarization through identification of cross-document rhetorical relationships within a cluster of related documents. Every relation was marked by at least 3 annotators.
XQuAD-R is a retrieval version of the XQuAD dataset (a cross-lingual extractive QA dataset). Like XQuAD, XQUAD-R is an 11-way parallel dataset, where each question appears in 11 different languages and has 11 parallel correct answers across the languages.
Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input document. The popular metric such as ROUGE fails to show the severity of the problem. The dataset consists of faithfulness and factuality annotations of abstractive summaries for the XSum dataset. We have crowdsourced 3 judgements for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.
A collection of news article headlines in Yoruba from BBC Yoruba. Each headline is labeled with one of the following classes: africa, entertainment, health, nigeria, politics, sport or world. The dataset was presented in the paper: Hedderich, Adelani, Zhu, Alabi, Markus, Klakow: Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages (EMNLP 2020).