acronym_identification
Acronym identification training and development sets for the acronym identification task at SDU@AAAI-21.
Acronym identification training and development sets for the acronym identification task at SDU@AAAI-21.
ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data. This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug. DRUG-AE.rel provides relations between drugs and adverse effects. DRUG-DOSE.rel provides relations between drugs and dosages. ADE-NEG.txt pro...
AdversarialQA is a Reading Comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles using an adversarial model-in-the-loop. We use three different models; BiDAF (Seo et al., 2016), BERT-Large (Devlin et al., 2018), and RoBERTa-Large (Liu et al., 2019) in the annotation loop and construct three datasets;...
Named entity annotated data from the NCHLT Text Resource Development: Phase II Project, annotated with PERSON, LOCATION, ORGANISATION and MISCELLANEOUS tags.
AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (...
AirDialogue, is a large dataset that contains 402,038 goal-oriented conversations. To collect this dataset, we create a contextgenerator which provides travel and flight restrictions. Then the human annotators are asked to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions.
Arabic Jordanian General Tweets (AJGT) Corpus consisted of 1,800 tweets annotated as positive and negative. Modern Standard Arabic (MSA) or Jordanian dialect.
Allegro Reviews is a sentiment analysis dataset, consisting of 11,588 product reviews written in Polish and extracted from Allegro.pl - a popular e-commerce marketplace. Each review contains at least 50 words and has a rating on a scale from one (negative review) to five (positive review). We recommend using the provided train/dev/test split. T...
Allocine Dataset: A Large-Scale French Movie Reviews Dataset. This is a dataset for binary sentiment classification, made of user reviews scraped from Allocine.fr. It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k).
The Amazon reviews dataset consists of reviews from amazon. The data span a period of 18 years, including ~35 million reviews up to March 2013. Reviews include product and user information, ratings, and a plaintext review.
We provide an Amazon product reviews dataset for multilingual text classification. The dataset contains reviews in English, Japanese, German, French, Chinese and Spanish, collected between November 1, 2015 and November 1, 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an a...
AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with 14,042 ...
Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop when dealing with domain text, especially for a domain with lots of special terms and diverse writing styles, such as the biomedical domain. However, building domain-specific CWS requires extremely high annotation cost. In this paper, we propose an ap...
It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (e...
A large-scale dataset consisting of approximately 100,000 algebraic word problems. The solution to each question is explained step-by-step using natural language. This data is used to train a program generation model that learns to generate the explanation, while generating the program that solves the question.
AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)
ArCOV-19 is an Arabic COVID-19 Twitter dataset that covers the period from 27th of January till 30th of April 2020. ArCOV-19 is designed to enable research under several domains including natural language processing, information retrieval, and social computing, among others
Dataset of 8364 restaurant reviews scrapped from qaym.com in Arabic for sentiment analysis
ArSarcasm is a new Arabic sarcasm detection dataset. The dataset was created using previously available Arabic sentiment analysis datasets (SemEval 2017 and ASTD) and adds sarcasm and dialect labels to them. The dataset contains 10,547 tweets, 1,682 (16%) of which are sarcastic.
Abu El-Khair Corpus is an Arabic text corpus, that includes more than five million newspaper articles. It contains over a billion and a half words in total, out of which, there are about three million unique words. The corpus is encoded with two types of encoding, namely: UTF-8, and Windows CP-1256. Also it was marked with two mark-up languages,...
This Speech corpus has been developed as part of PhD work carried out by Nawar Halabi at the University of Southampton. The corpus was recorded in south Levantine Arabic (Damascian accent) using a professional studio. Synthesized speech as an output using this corpus has produced a high quality, natural voice. Note that in order to limit the req...
The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.
A dataset of 1.7 million arXiv articles for applications like trend analysis, paper recommender engines, category prediction, co-citation networks, knowledge graph construction and semantic search interfaces.
ASSET is a dataset for evaluating Sentence Simplification systems with multiple rewriting transformations, as described in "ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification Models with Multiple Rewriting Transformations". The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 10 t...
The ASSIN (Avaliação de Similaridade Semântica e INferência textual) corpus is a corpus annotated with pairs of sentences written in Portuguese that is suitable for the exploration of textual entailment and paraphrasing classifiers. The corpus contains pairs of sentences extracted from news articles written in European Portuguese (EP) and Brazi...
The ASSIN 2 corpus is composed of rather simple sentences. Following the procedures of SemEval 2014 Task 1. The training and validation data are composed, respectively, of 6,500 and 500 sentence pairs in Brazilian Portuguese, annotated for entailment and semantic similarity. Semantic similarity values range from 1 to 5, and text entailment class...
This dataset provides the template sentences and relationships defined in the ATOMIC common sense dataset. There are three splits - train, test, and dev. From the authors. Disclaimer/Content warning: the events in atomic have been automatically extracted from blogs, stories and books written at various times. The events might depict violent or...
The (20) QA bAbI tasks are a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable ...
BANKING77 dataset provides a very fine-grained set of intents in a banking domain. It comprises 13,083 customer service queries labeled with 77 intents. It focuses on fine-grained single-domain intent detection.
This dataset is used to train models for Natural Language Inference Tasks in Low-Resource Languages like Hindi.