Back to home
All Datasets 🏷
All datasets from our datasets repository and community bucket.
Also check out the list of supported Metrics 📉.
41 results
The ALT project aims to advance the state-of-the-art Asian natural language processing (NLP) techniques through the open collaboration for developing and using ALT. It was first conducted by NICT and UCSY as described in Ye Kyaw Thu, Win Pa Pa, Masao Utiyama, Andrew Finch and Eiichiro Sumita (2016). Then, it was developed under ASEAN IVO as described in this Web page. The process of building ALT began with sampling about 20,000 sentences from English Wikinews, and then these sentences were translated into the other languages. ALT now has 13 languages: Bengali, English, Filipino, Hindi, Bahasa Indonesia, Japanese, Khmer, Lao, Malay, Myanmar (Burmese), Thai, Vietnamese, Chinese (Simplified Chinese).
We provide an Amazon product reviews dataset for multilingual text classification. The dataset contains reviews in English, Japanese, German, French, Chinese and Spanish, collected between November 1, 2015 and November 1, 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID and the coarse-grained product category (e.g. ‘books’, ‘appliances’, etc.) The corpus is balanced across stars, so each star rating constitutes 20% of the reviews in each language. For each language, there are 200,000, 5,000 and 5,000 reviews in the training, development and test sets respectively. The maximum number of reviews per reviewer is 20 and the maximum number of reviews per product is 20. All reviews are truncated after 2,000 characters, and all reviews are at least 20 characters long. Note that the language of a review does not necessarily match the language of its marketplace (e.g. reviews from amazon.de are primarily written in German, but could also be written in English, etc.). For this reason, we applied a language detection algorithm based on the work in Bojanowski et al. (2017) to determine the language of the review text and we removed reviews that were not written in the expected language.
Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop when dealing with domain text, especially for a domain with lots of special terms and diverse writing styles, such as the biomedical domain. However, building domain-specific CWS requires extremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant knowledge from high resource to low resource domains. Extensive experiments show that our mode achieves consistently higher accuracy than the single-task CWS and other transfer learning baselines, especially when there is a large disparity between source and target domains. This dataset is the accompanied medical Chinese word segmentation (CWS) dataset. The tags are in BIES scheme. For more details see https://www.aclweb.org/anthology/C18-1307/
This is a multilingual parallel corpus created from translations of the Bible compiled by Christos Christodoulopoulos and Mark Steedman. 102 languages, 5,148 bitexts total number of files: 107 total number of tokens: 56.43M total number of sentence fragments: 2.84M
Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations. We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.
In this paper, we introduce Chinese AI and Law challenge dataset (CAIL2018), the first large-scale Chinese legal dataset for judgment prediction. CAIL contains more than 2.6 million criminal cases published by the Supreme People's Court of China, which are several times larger than other datasets in existing works on judgment prediction. Moreover, the annotations of judgment results are more detailed and rich. It consists of applicable law articles, charges, and prison terms, which are expected to be inferred according to the fact descriptions of cases. For comparison, we implement several conventional text classification baselines for judgment prediction and experimental results show that it is still a challenge for current models to predict the judgment results of legal cases, especially on prison terms. To help the researchers make improvements on legal judgment prediction.
This dataset is designed to provide training data for common sense relationships pulls together from various sources. The dataset is multi-lingual. See langauge codes and language info here: https://github.com/commonsense/conceptnet5/wiki/Languages This dataset provides an interface for the conceptnet5 csv file, and some (but not all) of the raw text data used to build conceptnet5: omcsnet_sentences_free.txt, and omcsnet_sentences_more.txt. One use of this dataset would be to learn to extract the conceptnet relationship from the omcsnet sentences. Conceptnet5 has 34,074,917 relationships. Of those relationships, there are 2,176,099 surface text sentences related to those 2M entries. omcsnet_sentences_free has 898,161 lines. omcsnet_sentences_more has 2,001,736 lines. Original downloads are available here https://github.com/commonsense/conceptnet5/wiki/Downloads. For more information, see: https://github.com/commonsense/conceptnet5/wiki The omcsnet data comes with the following warning from the authors of the above site: Remember: this data comes from various forms of crowdsourcing. Sentences in these files are not necessarily true, useful, or appropriate.
KdConv is a Chinese multi-domain Knowledge-driven Conversionsation dataset, grounding the topics in multi-turn conversations to knowledge graphs. KdConv contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0. These conversations contain in-depth discussions on related topics and natural transition between multiple topics, while the corpus can also used for exploration of transfer learning and domain adaptation.\
This is LiveQA, a Chinese dataset constructed from play-by-play live broadcast. It contains 117k multiple-choice questions written by human commentators for over 1,670 NBA games, which are collected from the Chinese Hupu website.
The MedDialog dataset (English) contains conversations (in English) between doctors and patients.It has 0.26 million dialogues. The data is continuously growing and more dialogues will be added. The raw dialogues are from healthcaremagic.com and icliniq.com. All copyrights of the data belong to healthcaremagic.com and icliniq.com.
We introduce MKQA, an open-domain question answering evaluation set comprising 10k question-answer pairs sampled from the Google Natural Questions dataset, aligned across 26 typologically diverse languages (260k question-answer pairs in total). For each query we collected new passage-independent answers. These queries and answers were then human translated into 25 Non-English languages.
The Microsoft Terminology Collection can be used to develop localized versions of applications that integrate with Microsoft products. It can also be used to integrate Microsoft terminology into other terminology collections or serve as a base IT glossary for language development in the nearly 100 languages available. Terminology is provided in .tbx format, an industry standard for terminology exchange.
The Third International Chinese Language Processing Bakeoff was held in Spring 2006 to assess the state of the art in two important tasks: word segmentation and named entity recognition. Twenty-nine groups submitted result sets in the two tasks across two tracks and a total of five corpora. We found strong results in both tasks as well as continuing challenges. MSRA NER is one of the provided dataset. There are three types of NE, PER (person), ORG (organization) and LOC (location). The dataset is in the BIO scheme. For more details see https://faculty.washington.edu/levow/papers/sighan06.pdf
A parallel corpus of News Commentaries provided by WMT for training SMT. The source is taken from CASMACAT: http://www.casmacat.eu/corpus/news-commentary.html 12 languages, 63 bitexts total number of files: 61,928 total number of tokens: 49.66M total number of sentence fragments: 1.93M
OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side. The corpus covers 100 languages (including English).OPUS-100 contains approximately 55M sentence pairs. Of the 99 language pairs, 44 have 1M sentence pairs of training data, 73 have at least 100k, and 95 have at least 10k.
A parallel corpus of Ubuntu localization files. Source: https://translations.launchpad.net 244 languages, 23,988 bitexts total number of files: 30,959 total number of tokens: 29.84M total number of sentence fragments: 7.73M
ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts This dataset contains the developed parallel corpus from the open access Google Patents dataset in 74 language pairs, comprising more than 68 million sentences and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.
PAWS-X, a multilingual version of PAWS (Paraphrase Adversaries from Word Scrambling) for six languages. This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. English language is available by default. All translated pairs are sourced from examples in PAWS-Wiki. For further details, see the accompanying paper: PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification (https://arxiv.org/abs/1908.11828) NOTE: There might be some missing or wrong labels in the dataset and we have replaced them with -1.
People's Daily NER Dataset is a commonly used dataset for Chinese NER, with text from People's Daily (人民日报), the largest official newspaper. The dataset is in BIO scheme. Entity types are: PER (person), ORG (organization) and LOC (location).
A parallel corpus originally extracted from http://se.php.net/download-docs.php. The original documents are written in English and have been partly translated into 21 languages. The original manuals contain about 500,000 words. The amount of actually translated texts varies for different languages between 50,000 and 380,000 words. The corpus is rather noisy and may include parts from the English original in some of the translations. The corpus is tokenized and each language pair has been sentence aligned. 23 languages, 252 bitexts total number of files: 71,414 total number of tokens: 3.28M total number of sentence fragments: 1.38M
The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform. Developed by: Qatar Computing Research Institute, Arabic Language Technologies Group The QED Corpus is made public for RESEARCH purpose only. The corpus is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Copyright Qatar Computing Research Institute. All rights reserved. 225 languages, 9,291 bitexts total number of files: 271,558 total number of tokens: 371.76M total number of sentence fragments: 30.93M
This dataset add sentiment lexicons for 81 languages generated via graph propagation based on a knowledge graph--a graphical representation of real-world entities and the links between them.
This is a collection of parallel corpora collected by Hercules Dalianis and his research group for bilingual dictionary construction. More information in: Hercules Dalianis, Hao-chun Xing, Xin Zhang: Creating a Reusable English-Chinese Parallel Corpus for Bilingual Dictionary Construction, In Proceedings of LREC2010 (source: http://people.dsv.su.se/~hercules/SEC/) and Konstantinos Charitakis (2007): Using Parallel Corpora to Create a Greek-English Dictionary with UPLUG, In Proceedings of NODALIDA 2007. Afrikaans-English: Aldin Draghoender and Mattias Kanhov: Creating a reusable English – Afrikaans parallel corpora for bilingual dictionary construction 4 languages, 3 bitexts total number of files: 6 total number of tokens: 1.32M total number of sentence fragments: 0.15M
This is a collection of Quran translations compiled by the Tanzil project The translations provided at this page are for non-commercial purposes only. If used otherwise, you need to obtain necessary permission from the translator or the publisher. If you are using more than three of the following translations in a website or application, we require you to put a link back to this page to make sure that subsequent users have access to the latest updates. 42 languages, 878 bitexts total number of files: 105 total number of tokens: 22.33M total number of sentence fragments: 1.01M
A parallel corpus of TED talk subtitles provided by CASMACAT: http://www.casmacat.eu/corpus/ted2013.html. The files are originally provided by https://wit3.fbk.eu. 15 languages, 14 bitexts total number of files: 28 total number of tokens: 67.67M total number of sentence fragments: 3.81M
The core of WIT3 is the TED Talks corpus, that basically redistributes the original content published by the TED Conference website (http://www.ted.com). Since 2007, the TED Conference, based in California, has been posting all video recordings of its talks together with subtitles in English and their translations in more than 80 languages. Aside from its cultural and social relevance, this content, which is published under the Creative Commons BYNC-ND license, also represents a precious language resource for the machine translation research community, thanks to its size, variety of topics, and covered languages. This effort repurposes the original content in a way which is more convenient for machine translation researchers.
United nations general assembly resolutions: A six-language parallel corpus. This is a collection of translated documents from the United Nations originally compiled into a translation memory by Alexandre Rafalovitch, Robert Dale (see http://uncorpora.org). 6 languages, 15 bitexts total number of files: 6 total number of tokens: 18.87M total number of sentence fragments: 0.44M
This is a collection of translated documents from the United Nations. This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language
This parallel corpus consists of manually translated UN documents from the last 25 years (1990 to 2014) for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Tags: PER(人名), LOC(地点名), GPE(行政区名), ORG(机构名) Label Tag Meaning PER PER.NAM 名字(张三) PER.NOM 代称、类别名(穷人) LOC LOC.NAM 特指名称(紫玉山庄) LOC.NOM 泛称(大峡谷、宾馆) GPE GPE.NAM 行政区的名称(北京) ORG ORG.NAM 特定机构名称(通惠医院) ORG.NOM 泛指名称、统称(文艺公司)
A dataset of atomic wikipedia edits containing insertions and deletions of a contiguous chunk of text in a sentence. This dataset contains ~43 million edits across 8 languages. An atomic edit is defined as an edit e applied to a natural language expression S as the insertion, deletion, or substitution of a sub-expression P such that both the original expression S and the resulting expression e(S) are well-formed semantic constituents (MacCartney, 2009). In this corpus, we release such atomic insertions and deletions made to sentences in wikipedia.
WikiLingua is a large-scale multilingual dataset for the evaluation of crosslingual abstractive summarization systems. The dataset includes ~770k article and summary pairs in 18 languages from WikiHow. The gold-standard article-summary alignments across languages was done by aligning the images that are used to describe each how-to step in an article.
WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. Task 1 uses Wikipedia data for 6 language pairs that includes high-resource English--German (En-De) and English--Chinese (En-Zh), medium-resource Romanian--English (Ro-En) and Estonian--English (Et-En), and low-resource Sinhalese--English (Si-En) and Nepalese--English (Ne-En), as well as a dataset with a combination of Wikipedia articles and Reddit articles for Russian-English (En-Ru). The datasets were collected by translating sentences sampled from source language articles using state-of-the-art NMT models built using the fairseq toolkit and annotated with Direct Assessment (DA) scores by professional translators. Each sentence was annotated following the FLORES setup, which presents a form of DA, where at least three professional translators rate each sentence from 0-100 according to the perceived translation quality. DA scores are standardised using the z-score by rater. Participating systems are required to score sentences according to z-standardised DA scores.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. Task 2 evaluates the application of QE for post-editing purposes. It consists of predicting: - A/ Word-level tags. This is done both on source side (to detect which words caused errors) and target side (to detect mistranslated or missing words). - A1/ Each token is tagged as either `OK` or `BAD`. Additionally, each gap between two words is tagged as `BAD` if one or more missing words should have been there, and `OK` otherwise. Note that number of tags for each target sentence is 2*N+1, where N is the number of tokens in the sentence. - A2/ Tokens are tagged as `OK` if they were correctly translated, and `BAD` otherwise. Gaps are not tagged. - B/ Sentence-level HTER scores. HTER (Human Translation Error Rate) is the ratio between the number of edits (insertions/deletions/replacements) needed and the reference translation length.
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models with respect to cross-lingual natural language understanding and generation. The benchmark is composed of the following 11 tasks: - NER - POS Tagging (POS) - News Classification (NC) - MLQA - XNLI - PAWS-X - Query-Ad Matching (QADSM) - Web Page Ranking (WPR) - QA Matching (QAM) - Question Generation (QG) - News Title Generation (NTG) For more information, please take a look at https://microsoft.github.io/XGLUE/.
XQuAD-R is a retrieval version of the XQuAD dataset (a cross-lingual extractive QA dataset). Like XQuAD, XQUAD-R is an 11-way parallel dataset, where each question appears in 11 different languages and has 11 parallel correct answers across the languages.