Back to home
All Datasets 🏷
All datasets from our datasets repository and community bucket.
Also check out the list of supported Metrics 📉.
45 results
Allocine Dataset: A Large-Scale French Movie Reviews Dataset. This is a dataset for binary sentiment classification, made of user reviews scraped from It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k).
ArCOV-19 is an Arabic COVID-19 Twitter dataset that covers the period from 27th of January till 30th of April 2020. ArCOV-19 is designed to enable research under several domains including natural language processing, information retrieval, and social computing, among others
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories: A (Human Necessities), B (Performing Operations; Transporting), C (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions), F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting), G (Physics), H (Electricity), and Y (General tagging of new or cross-sectional technology) There are two features: - description: detailed description of patent. - abstract: Patent abastract.
The BrWaC (Brazilian Portuguese Web as Corpus) is a large corpus constructed following the Wacky framework, which was made public for research purposes. The current corpus version, released in January 2017, is composed by 3.53 million documents, 2.68 billion tokens and 5.79 million types. Please note that this resource is available solely for academic research purposes, and you agreed not to use it for any commercial applications. Manually download at
The Bosnian web corpus bsWaC was built by crawling the .ba top-level domain in 2014. The corpus was near-deduplicated on paragraph level, normalised via diacritic restoration, morphosyntactically annotated and lemmatised. The corpus is shuffled by paragraphs. Each paragraph contains metadata on the URL, domain and language identification (Bosnian vs. Croatian vs. Serbian). Version 1.0 of this corpus is described in Version 1.1 contains newer and better linguistic annotations.
ChrEn is a Cherokee-English parallel dataset to facilitate machine translation research between Cherokee and English. ChrEn is extremely low-resource contains 14k sentence pairs in total, split in ways that facilitate both in-domain and out-of-domain evaluation. ChrEn also contains 5k Cherokee monolingual data to enable semi-supervised learning.
CNN/DailyMail non-anonymized summarization dataset. There are two features: - article: text of news article, used as the document to be summarized - highlights: joined text of highlights with <s> and </s> around each highlight, which is the target summary
CodeSearchNet corpus contains about 6 million functions from open-source code spanning six programming languages (Go, Java, JavaScript, PHP, Python, and Ruby). The CodeSearchNet Corpus also contains automatically generated query-like natural language for 2 million functions, obtained from mechanically scraping and preprocessing associated function documentation.
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio de Sanidad, Consumo y Bienestar Social. The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology.
The hrenWaC corpus version 2.0 consists of parallel Croatian-English texts crawled from the .hr top-level domain for Croatia. The corpus was built with Spidextor (, a tool that glues together the output of SpiderLing used for crawling and Bitextor used for bitext extraction. The accuracy of the extracted bitext on the segment level is around 80% and on the word level around 84%.
The Croatian web corpus hrWaC was built by crawling the .hr top-level domain in 2011 and again in 2014. The corpus was near-deduplicated on paragraph level, normalised via diacritic restoration, morphosyntactically annotated and lemmatised. The corpus is shuffled by paragraphs. Each paragraph contains metadata on the URL, domain and language identification (Croatian vs. Serbian). Version 2.0 of this corpus is described in Version 2.1 contains newer and better linguistic annotations.
In this paper, we introduce a large-scale Indonesian summarization dataset. We harvest articles from this http URL, an online news portal, and obtain 215,827 document-summary pairs. We leverage pre-trained language models to develop benchmark extractive and abstractive summarization methods over the dataset with multilingual and monolingual BERT-based models. We include a thorough error analysis by examining machine-generated summaries that have low ROUGE scores, and expose both issues with ROUGE it-self, as well as with extractive and abstractive summarization models.
The dataset contains around 500K articles (136M of words) from 7 Indonesian newspapers: Detik, Kompas, Tempo, CNN Indonesia, Sindo, Republika and Poskota. The articles are dated between 1st January 2018 and 20th August 2018 (with few exceptions dated earlier). The size of uncompressed 500K json files (newspapers-json.tgz) is around 2.2GB, and the cleaned uncompressed in a big text file (newspapers.txt.gz) is about 1GB. The original source in Google Drive contains also a dataset in html format which include raw data (pictures, css, javascript, ...) from the online news website
The Large Spanish Corpus is a compilation of 15 unlabelled Spanish corpora spanning Wikipedia to European parliament notes. Each config contains the data corresponding to a different corpus. For example, "all_wiki" only includes examples from Spanish Wikipedia. By default, the config is set to "combined" which loads all the corpora; with this setting you can also specify the number of samples to return per corpus by configuring the "split" argument.
Arabic Poetry Metric Classification. The dataset contains the verses and their corresponding meter classes.Meter classes are represented as numbers from 0 to 13. The dataset can be highly useful for further research in order to improve the field of Arabic poems’ meter classification.The train dataset contains 47,124 records and the test dataset contains 8316 records.
Translator Human Parity Data Human evaluation results and translation output for the Translator Human Parity Data release, as described in The Translator Human Parity Data release contains all human evaluation results and translations related to our paper "Achieving Human Parity on Automatic Chinese to English News Translation", published on March 14, 2018.
OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side. The corpus covers 100 languages (including English).OPUS-100 contains approximately 55M sentence pairs. Of the 99 language pairs, 44 have 1M sentence pairs of training data, 73 have at least 100k, and 95 have at least 10k.
This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz. CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages.
PolEval is a SemEval-inspired evaluation campaign for natural language processing tools for Polish.Submitted solutions compete against one another within certain tasks selected by organizers, using available data and are evaluated according topre-established procedures. One of the tasks in PolEval-2019 was Machine Translation (Task-4). The task is to train as good as possible machine translation system, using any technology,with limited textual resources.The competition will be done for 2 language pairs, more popular English-Polish (into Polish direction) and pair that can be called low resourcedRussian-Polish (in both directions). Here, Polish-English is also made available to allow for training in both directions. However, the test data is ONLY available for English-Polish.
A new multi-target dataset of 5.4K TLDRs over 3.2K papers. SCITLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden.
Dataset with the text of 10% of questions and answers from the Stack Overflow programming Q&A website. This is organized as three tables: Questions contains the title, body, creation date, closed date (if applicable), score, and owner ID for all non-deleted Stack Overflow questions whose Id is a multiple of 10. Answers contains the body, creation date, score, and owner ID for each of the answers to these questions. The ParentId column links back to the Questions table. Tags contains the tags on each of these questions.
An unannotated Spanish corpus of nearly 1.5 billion words, compiled from different resources from the web. This resources include the spanish portions of SenSem, the Ancora Corpus, some OPUS Project Corpora and the Europarl, the Tibidabo Treebank, the IULA Spanish LSP Treebank, and dumps from the Spanish Wikipedia, Wikisource and Wikibooks. This corpus is a compilation of 100 text files. Each line of these files represents one of the 50 million sentences from the corpus.
The Serbian web corpus srWaC was built by crawling the .rs top-level domain in 2014. The corpus was near-deduplicated on paragraph level, normalised via diacritic restoration, morphosyntactically annotated and lemmatised. The corpus is shuffled by paragraphs. Each paragraph contains metadata on the URL, domain and language identification (Serbian vs. Croatian). Version 1.0 of this corpus is described in Version 1.1 contains newer and better linguistic annotations.
The Swahili dataset developed specifically for language modeling task. The dataset contains 28,000 unique words with 6.84M, 970k, and 2M words for the train, valid and test partitions respectively which represent the ratio 80:10:10. The entire dataset is lowercased, has no punctuation marks and, the start and end of sentence markers have been incorporated to facilitate easy tokenization during language modeling.
ThaiSum is a large-scale corpus for Thai text summarization obtained from several online news websites namely Thairath, ThaiPBS, Prachathai, and The Standard. This dataset consists of over 350,000 article and summary pairs written by journalists.
This news dataset is a persistent historical archive of noteable events in the Indian subcontinent from start-2001 to mid-2020, recorded in realtime by the journalists of India. It contains approximately 3.3 million events published by Times of India. Times Group as a news agency, reaches out a very wide audience across Asia and drawfs every other agency in the quantity of english articles published per day. Due to the heavy daily volume over multiple years, this data offers a deep insight into Indian society, its priorities, events, issues and talking points and how they have unfolded over time. It is possible to chop this dataset into a smaller piece for a more focused analysis, based on one or more facets.
Thai Literature Corpora (TLC): Corpora of machine-ingestible Thai classical literature texts. Release: 6/25/19 It consists of two datasets: ## TLC set It is texts from [Vajirayana Digital Library](, stored by chapters and stanzas (non-tokenized). tlc v.2.0 (6/17/19 : a total of 34 documents, 292,270 lines, 31,790,734 characters) tlc v.1.0 (6/11/19 : a total of 25 documents, 113,981 lines, 28,775,761 characters) ## TNHC set It is texts from Thai National Historical Corpus, stored by lines (manually tokenized). tnhc v.1.0 (6/25/19 : a total of 47 documents, 756,478 lines, 13,361,142 characters)
Twitter users often post parallel tweets—tweets that contain the same content but are written in different languages. Parallel tweets can be an important resource for developing machine translation (MT) systems among other natural language processing (NLP) tasks. This resource is a result of a generic method for collecting parallel tweets. Using the method, we compiled a bilingual corpus of English-Arabic parallel tweets and a list of Twitter accounts who post English-Arabic tweets regularly. Additionally, we annotate a subset of Twitter accounts with their countries of origin and topic of interest, which provides insights about the population who post parallel tweets.
The Universal Declaration of Human Rights (UDHR) is a milestone document in the history of human rights. Drafted by representatives with different legal and cultural backgrounds from all regions of the world, it set out, for the first time, fundamental human rights to be universally protected. The Declaration was adopted by the UN General Assembly in Paris on 10 December 1948 during its 183rd plenary meeting. The dataset includes translations of the document in 464 languages and dialects. © 1996 – 2009 The Office of the High Commissioner for Human Rights This plain text version prepared by the “UDHR in Unicode” project,
UMC005 English-Urdu is a parallel corpus of texts in English and Urdu language with sentence alignments. The corpus can be used for experiments with statistical machine translation. The texts come from four different sources: - Quran - Bible - Penn Treebank (Wall Street Journal) - Emille corpus The authors provide the religious texts of Quran and Bible for direct download. Because of licensing reasons, Penn and Emille texts cannot be redistributed freely. However, if you already hold a license for the original corpora, we are able to provide scripts that will recreate our data on your disk. Our modifications include but are not limited to the following: - Correction of Urdu translations and manual sentence alignment of the Emille texts. - Manually corrected sentence alignment of the other corpora. - Our data split (training-development-test) so that our published experiments can be reproduced. - Tokenization (optional, but needed to reproduce our experiments). - Normalization (optional) of e.g. European vs. Urdu numerals, European vs. Urdu punctuation, removal of Urdu diacritics.
\ The dataset extracted from Persian Wikipedia into the form of articles and highlights and cleaned the dataset into pairs of articles and highlights and reduced the articles' length (only version 1.0.0) and highlights' length to a maximum of 512 and 128, respectively, suitable for parsBERT.
The Wikicorpus is a trilingual corpus (Catalan, Spanish, English) that contains large portions of the Wikipedia (based on a 2006 dump) and has been automatically enriched with linguistic information. In its present version, it contains over 750 million words.
Large scale, unlabeled text dataset with 39 Million tokens in the training set. Inspired by the original WikiText Long Term Dependency dataset (Merity et al., 2016). TL means "Tagalog." Originally published in Cruz & Cheng (2019).